New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr2d | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
eqtr2d.1 | |
eqtr2d.2 |
Ref | Expression |
---|---|
eqtr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2d.1 | . . 3 | |
2 | eqtr2d.2 | . . 3 | |
3 | 1, 2 | eqtrd 2385 | . 2 |
4 | 3 | eqcomd 2358 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtrrd 2390 3eqtr2rd 2392 ifan 3701 ifor 3702 phi11lem1 4595 enmap2lem3 6065 |
Copyright terms: Public domain | W3C validator |