NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtr2d GIF version

Theorem eqtr2d 2386
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
eqtr2d.1 (φA = B)
eqtr2d.2 (φB = C)
Assertion
Ref Expression
eqtr2d (φC = A)

Proof of Theorem eqtr2d
StepHypRef Expression
1 eqtr2d.1 . . 3 (φA = B)
2 eqtr2d.2 . . 3 (φB = C)
31, 2eqtrd 2385 . 2 (φA = C)
43eqcomd 2358 1 (φC = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  3eqtrrd  2390  3eqtr2rd  2392  ifan  3702  ifor  3703  phi11lem1  4596  enmap2lem3  6066
  Copyright terms: Public domain W3C validator