NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifor Unicode version

Theorem ifor 3703
Description: Rewrite a disjunction in an if statement as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifor

Proof of Theorem ifor
StepHypRef Expression
1 iftrue 3669 . . . 4
21orcs 383 . . 3
3 iftrue 3669 . . 3
42, 3eqtr4d 2388 . 2
5 iffalse 3670 . . 3
6 biorf 394 . . . 4
76ifbid 3681 . . 3
85, 7eqtr2d 2386 . 2
94, 8pm2.61i 156 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wo 357   wceq 1642  cif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator