New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifan | Unicode version |
Description: Rewrite a conjunction in an if statement as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3669 | . . 3 | |
2 | ibar 490 | . . . 4 | |
3 | 2 | ifbid 3681 | . . 3 |
4 | 1, 3 | eqtr2d 2386 | . 2 |
5 | simpl 443 | . . . . 5 | |
6 | 5 | con3i 127 | . . . 4 |
7 | iffalse 3670 | . . . 4 | |
8 | 6, 7 | syl 15 | . . 3 |
9 | iffalse 3670 | . . 3 | |
10 | 8, 9 | eqtr4d 2388 | . 2 |
11 | 4, 10 | pm2.61i 156 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wa 358 wceq 1642 cif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |