Step | Hyp | Ref
| Expression |
1 | | iftrue 3669 |
. . . . . . . . 9
 Nn   Nn  1c   1c  |
2 | 1 | eqcomd 2358 |
. . . . . . . 8
 Nn 
1c
 
Nn  1c    |
3 | | eleq1 2413 |
. . . . . . . . . . 11
 
Nn
Nn   |
4 | | addceq1 4384 |
. . . . . . . . . . 11
  1c  1c  |
5 | | id 19 |
. . . . . . . . . . 11
   |
6 | 3, 4, 5 | ifbieq12d 3685 |
. . . . . . . . . 10
  
Nn  1c   
Nn  1c    |
7 | 6 | eqeq2d 2364 |
. . . . . . . . 9
  
1c
 
Nn  1c   1c
 
Nn 
1c     |
8 | 7 | rspcev 2956 |
. . . . . . . 8
  
1c
 
Nn  1c   

1c
 
Nn  1c    |
9 | 2, 8 | sylan2 460 |
. . . . . . 7
 
Nn   1c   Nn  1c    |
10 | 9 | ancoms 439 |
. . . . . 6
  Nn    1c   Nn  1c    |
11 | | vex 2863 |
. . . . . . . 8
 |
12 | | 1cex 4143 |
. . . . . . . 8
1c
 |
13 | 11, 12 | addcex 4395 |
. . . . . . 7
 1c
 |
14 | | eqeq1 2359 |
. . . . . . . 8
  1c   
Nn  1c   1c
 
Nn 
1c     |
15 | 14 | rexbidv 2636 |
. . . . . . 7
  1c    
Nn  1c    1c   Nn  1c     |
16 | | df-phi 4566 |
. . . . . . 7
Phi  
 
Nn 
1c    |
17 | 13, 15, 16 | elab2 2989 |
. . . . . 6
 
1c
Phi   1c   Nn  1c    |
18 | 10, 17 | sylibr 203 |
. . . . 5
  Nn   1c Phi   |
19 | | eleq2 2414 |
. . . . . . . . 9
Phi
Phi
 
1c
Phi  1c Phi    |
20 | 19 | biimpac 472 |
. . . . . . . 8
  
1c
Phi Phi Phi   1c Phi   |
21 | 14 | rexbidv 2636 |
. . . . . . . . . 10
  1c    
Nn  1c    1c   Nn  1c     |
22 | | df-phi 4566 |
. . . . . . . . . 10
Phi  
 
Nn 
1c    |
23 | 13, 21, 22 | elab2 2989 |
. . . . . . . . 9
 
1c
Phi   1c   Nn  1c    |
24 | | iffalse 3670 |
. . . . . . . . . . . . . . . . . . 19
 Nn   Nn 
1c    |
25 | 24 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
 Nn   1c
 
Nn 
1c  
1c
   |
26 | 25 | biimpac 472 |
. . . . . . . . . . . . . . . . 17
  
1c
 
Nn  1c 
Nn  1c
  |
27 | | peano2 4404 |
. . . . . . . . . . . . . . . . . 18
 Nn 
1c
Nn  |
28 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . 18
 
1c
  1c Nn Nn   |
29 | 27, 28 | syl5ibcom 211 |
. . . . . . . . . . . . . . . . 17
 Nn   1c
Nn   |
30 | 26, 29 | syl5 28 |
. . . . . . . . . . . . . . . 16
 Nn    1c
 
Nn 
1c  Nn Nn   |
31 | 30 | expdimp 426 |
. . . . . . . . . . . . . . 15
  Nn  1c   Nn  1c    Nn Nn   |
32 | 31 | pm2.18d 103 |
. . . . . . . . . . . . . 14
  Nn  1c   Nn  1c   Nn  |
33 | | simpl 443 |
. . . . . . . . . . . . . 14
  Nn  1c   Nn  1c   Nn  |
34 | | simpr 447 |
. . . . . . . . . . . . . . 15
  Nn  1c   Nn  1c    1c
 
Nn 
1c    |
35 | | iftrue 3669 |
. . . . . . . . . . . . . . . 16
 Nn   Nn  1c   1c  |
36 | 32, 35 | syl 15 |
. . . . . . . . . . . . . . 15
  Nn  1c   Nn  1c     Nn  1c  
1c  |
37 | 34, 36 | eqtr2d 2386 |
. . . . . . . . . . . . . 14
  Nn  1c   Nn  1c    1c
 1c  |
38 | | peano4 4558 |
. . . . . . . . . . . . . 14
  Nn Nn  1c 
1c   |
39 | 32, 33, 37, 38 | syl3anc 1182 |
. . . . . . . . . . . . 13
  Nn  1c   Nn  1c     |
40 | 39 | 3adant2 974 |
. . . . . . . . . . . 12
  Nn 
1c
 
Nn  1c  
  |
41 | | simp2 956 |
. . . . . . . . . . . 12
  Nn 
1c
 
Nn  1c  
  |
42 | 40, 41 | eqeltrrd 2428 |
. . . . . . . . . . 11
  Nn 
1c
 
Nn  1c  
  |
43 | 42 | 3expia 1153 |
. . . . . . . . . 10
  Nn    1c
 
Nn 
1c     |
44 | 43 | rexlimdva 2739 |
. . . . . . . . 9
 Nn    1c   Nn  1c     |
45 | 23, 44 | syl5bi 208 |
. . . . . . . 8
 Nn   1c Phi    |
46 | 20, 45 | syl5 28 |
. . . . . . 7
 Nn    1c
Phi Phi Phi     |
47 | 46 | exp3a 425 |
. . . . . 6
 Nn   1c Phi Phi Phi     |
48 | 47 | adantr 451 |
. . . . 5
  Nn    1c
Phi Phi Phi     |
49 | 18, 48 | mpd 14 |
. . . 4
  Nn  Phi Phi    |
50 | | iffalse 3670 |
. . . . . . . . 9
 Nn   Nn 
1c    |
51 | 50 | eqcomd 2358 |
. . . . . . . 8
 Nn  
Nn  1c    |
52 | 6 | eqeq2d 2364 |
. . . . . . . . 9
 
 
Nn 
1c    Nn  1c     |
53 | 52 | rspcev 2956 |
. . . . . . . 8
 
 
Nn 
1c     
Nn  1c    |
54 | 51, 53 | sylan2 460 |
. . . . . . 7
 
Nn   
Nn  1c    |
55 | 54 | ancoms 439 |
. . . . . 6
  Nn    
Nn  1c    |
56 | | eqeq1 2359 |
. . . . . . . 8
 
 
Nn 
1c    Nn  1c     |
57 | 56 | rexbidv 2636 |
. . . . . . 7
  
 
Nn 
1c  
 
Nn 
1c     |
58 | 11, 57, 16 | elab2 2989 |
. . . . . 6
 Phi 
 
Nn 
1c    |
59 | 55, 58 | sylibr 203 |
. . . . 5
  Nn 
Phi   |
60 | | eleq2 2414 |
. . . . . . . . 9
Phi
Phi

Phi Phi    |
61 | 60 | biimpac 472 |
. . . . . . . 8
  Phi Phi Phi  Phi   |
62 | 56 | rexbidv 2636 |
. . . . . . . . . 10
  
 
Nn 
1c  
 
Nn 
1c     |
63 | 11, 62, 22 | elab2 2989 |
. . . . . . . . 9
 Phi 
 
Nn 
1c    |
64 | | simpr 447 |
. . . . . . . . . . . . . 14
  Nn  
Nn  1c  
 
Nn 
1c    |
65 | 35 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . 19
 Nn   
Nn  1c  
1c   |
66 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . 20
 Nn 
1c
Nn  |
67 | | eleq1a 2422 |
. . . . . . . . . . . . . . . . . . . 20
 
1c
Nn  
1c
Nn   |
68 | 66, 67 | syl 15 |
. . . . . . . . . . . . . . . . . . 19
 Nn  
1c
Nn   |
69 | 65, 68 | sylbid 206 |
. . . . . . . . . . . . . . . . . 18
 Nn   
Nn  1c  Nn   |
70 | 69 | com12 27 |
. . . . . . . . . . . . . . . . 17
   Nn 
1c   Nn Nn   |
71 | 70 | con3d 125 |
. . . . . . . . . . . . . . . 16
   Nn 
1c   Nn
Nn   |
72 | 71 | impcom 419 |
. . . . . . . . . . . . . . 15
  Nn  
Nn  1c  
Nn  |
73 | 72, 24 | syl 15 |
. . . . . . . . . . . . . 14
  Nn  
Nn  1c     Nn  1c    |
74 | 64, 73 | eqtr2d 2386 |
. . . . . . . . . . . . 13
  Nn  
Nn  1c  
  |
75 | 74 | adantlr 695 |
. . . . . . . . . . . 12
   Nn    Nn  1c     |
76 | | simplr 731 |
. . . . . . . . . . . 12
   Nn    Nn  1c     |
77 | 75, 76 | eqeltrrd 2428 |
. . . . . . . . . . 11
   Nn    Nn  1c     |
78 | 77 | ex 423 |
. . . . . . . . . 10
  Nn     Nn  1c     |
79 | 78 | rexlimdva 2739 |
. . . . . . . . 9
 Nn    
Nn  1c     |
80 | 63, 79 | syl5bi 208 |
. . . . . . . 8
 Nn  Phi
   |
81 | 61, 80 | syl5 28 |
. . . . . . 7
 Nn   Phi Phi Phi     |
82 | 81 | exp3a 425 |
. . . . . 6
 Nn  Phi Phi Phi     |
83 | 82 | adantr 451 |
. . . . 5
  Nn   Phi Phi Phi     |
84 | 59, 83 | mpd 14 |
. . . 4
  Nn  Phi Phi    |
85 | 49, 84 | pm2.61ian 765 |
. . 3
 Phi Phi
   |
86 | 85 | com12 27 |
. 2
Phi
Phi

   |
87 | 86 | ssrdv 3279 |
1
Phi
Phi
  |