Step | Hyp | Ref
| Expression |
1 | | iftrue 3669 |
. . . . . . . . 9
Nn Nn 1c 1c |
2 | 1 | eqcomd 2358 |
. . . . . . . 8
Nn
1c
Nn 1c |
3 | | eleq1 2413 |
. . . . . . . . . . 11
Nn
Nn |
4 | | addceq1 4384 |
. . . . . . . . . . 11
1c 1c |
5 | | id 19 |
. . . . . . . . . . 11
|
6 | 3, 4, 5 | ifbieq12d 3685 |
. . . . . . . . . 10
Nn 1c
Nn 1c |
7 | 6 | eqeq2d 2364 |
. . . . . . . . 9
1c
Nn 1c 1c
Nn
1c |
8 | 7 | rspcev 2956 |
. . . . . . . 8
1c
Nn 1c
1c
Nn 1c |
9 | 2, 8 | sylan2 460 |
. . . . . . 7
Nn 1c Nn 1c |
10 | 9 | ancoms 439 |
. . . . . 6
Nn 1c Nn 1c |
11 | | vex 2863 |
. . . . . . . 8
|
12 | | 1cex 4143 |
. . . . . . . 8
1c
|
13 | 11, 12 | addcex 4395 |
. . . . . . 7
1c
|
14 | | eqeq1 2359 |
. . . . . . . 8
1c
Nn 1c 1c
Nn
1c |
15 | 14 | rexbidv 2636 |
. . . . . . 7
1c
Nn 1c 1c Nn 1c |
16 | | df-phi 4566 |
. . . . . . 7
Phi
Nn
1c |
17 | 13, 15, 16 | elab2 2989 |
. . . . . 6
1c
Phi 1c Nn 1c |
18 | 10, 17 | sylibr 203 |
. . . . 5
Nn 1c Phi |
19 | | eleq2 2414 |
. . . . . . . . 9
Phi
Phi
1c
Phi 1c Phi |
20 | 19 | biimpac 472 |
. . . . . . . 8
1c
Phi Phi Phi 1c Phi |
21 | 14 | rexbidv 2636 |
. . . . . . . . . 10
1c
Nn 1c 1c Nn 1c |
22 | | df-phi 4566 |
. . . . . . . . . 10
Phi
Nn
1c |
23 | 13, 21, 22 | elab2 2989 |
. . . . . . . . 9
1c
Phi 1c Nn 1c |
24 | | iffalse 3670 |
. . . . . . . . . . . . . . . . . . 19
Nn Nn
1c |
25 | 24 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
Nn 1c
Nn
1c
1c
|
26 | 25 | biimpac 472 |
. . . . . . . . . . . . . . . . 17
1c
Nn 1c
Nn 1c
|
27 | | peano2 4404 |
. . . . . . . . . . . . . . . . . 18
Nn
1c
Nn |
28 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . 18
1c
1c Nn Nn |
29 | 27, 28 | syl5ibcom 211 |
. . . . . . . . . . . . . . . . 17
Nn 1c
Nn |
30 | 26, 29 | syl5 28 |
. . . . . . . . . . . . . . . 16
Nn 1c
Nn
1c Nn Nn |
31 | 30 | expdimp 426 |
. . . . . . . . . . . . . . 15
Nn 1c Nn 1c Nn Nn |
32 | 31 | pm2.18d 103 |
. . . . . . . . . . . . . 14
Nn 1c Nn 1c Nn |
33 | | simpl 443 |
. . . . . . . . . . . . . 14
Nn 1c Nn 1c Nn |
34 | | simpr 447 |
. . . . . . . . . . . . . . 15
Nn 1c Nn 1c 1c
Nn
1c |
35 | | iftrue 3669 |
. . . . . . . . . . . . . . . 16
Nn Nn 1c 1c |
36 | 32, 35 | syl 15 |
. . . . . . . . . . . . . . 15
Nn 1c Nn 1c Nn 1c
1c |
37 | 34, 36 | eqtr2d 2386 |
. . . . . . . . . . . . . 14
Nn 1c Nn 1c 1c
1c |
38 | | peano4 4558 |
. . . . . . . . . . . . . 14
Nn Nn 1c
1c |
39 | 32, 33, 37, 38 | syl3anc 1182 |
. . . . . . . . . . . . 13
Nn 1c Nn 1c |
40 | 39 | 3adant2 974 |
. . . . . . . . . . . 12
Nn
1c
Nn 1c
|
41 | | simp2 956 |
. . . . . . . . . . . 12
Nn
1c
Nn 1c
|
42 | 40, 41 | eqeltrrd 2428 |
. . . . . . . . . . 11
Nn
1c
Nn 1c
|
43 | 42 | 3expia 1153 |
. . . . . . . . . 10
Nn 1c
Nn
1c |
44 | 43 | rexlimdva 2739 |
. . . . . . . . 9
Nn 1c Nn 1c |
45 | 23, 44 | syl5bi 208 |
. . . . . . . 8
Nn 1c Phi |
46 | 20, 45 | syl5 28 |
. . . . . . 7
Nn 1c
Phi Phi Phi |
47 | 46 | exp3a 425 |
. . . . . 6
Nn 1c Phi Phi Phi |
48 | 47 | adantr 451 |
. . . . 5
Nn 1c
Phi Phi Phi |
49 | 18, 48 | mpd 14 |
. . . 4
Nn Phi Phi |
50 | | iffalse 3670 |
. . . . . . . . 9
Nn Nn
1c |
51 | 50 | eqcomd 2358 |
. . . . . . . 8
Nn
Nn 1c |
52 | 6 | eqeq2d 2364 |
. . . . . . . . 9
Nn
1c Nn 1c |
53 | 52 | rspcev 2956 |
. . . . . . . 8
Nn
1c
Nn 1c |
54 | 51, 53 | sylan2 460 |
. . . . . . 7
Nn
Nn 1c |
55 | 54 | ancoms 439 |
. . . . . 6
Nn
Nn 1c |
56 | | eqeq1 2359 |
. . . . . . . 8
Nn
1c Nn 1c |
57 | 56 | rexbidv 2636 |
. . . . . . 7
Nn
1c
Nn
1c |
58 | 11, 57, 16 | elab2 2989 |
. . . . . 6
Phi
Nn
1c |
59 | 55, 58 | sylibr 203 |
. . . . 5
Nn
Phi |
60 | | eleq2 2414 |
. . . . . . . . 9
Phi
Phi
Phi Phi |
61 | 60 | biimpac 472 |
. . . . . . . 8
Phi Phi Phi Phi |
62 | 56 | rexbidv 2636 |
. . . . . . . . . 10
Nn
1c
Nn
1c |
63 | 11, 62, 22 | elab2 2989 |
. . . . . . . . 9
Phi
Nn
1c |
64 | | simpr 447 |
. . . . . . . . . . . . . 14
Nn
Nn 1c
Nn
1c |
65 | 35 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . 19
Nn
Nn 1c
1c |
66 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . 20
Nn
1c
Nn |
67 | | eleq1a 2422 |
. . . . . . . . . . . . . . . . . . . 20
1c
Nn
1c
Nn |
68 | 66, 67 | syl 15 |
. . . . . . . . . . . . . . . . . . 19
Nn
1c
Nn |
69 | 65, 68 | sylbid 206 |
. . . . . . . . . . . . . . . . . 18
Nn
Nn 1c Nn |
70 | 69 | com12 27 |
. . . . . . . . . . . . . . . . 17
Nn
1c Nn Nn |
71 | 70 | con3d 125 |
. . . . . . . . . . . . . . . 16
Nn
1c Nn
Nn |
72 | 71 | impcom 419 |
. . . . . . . . . . . . . . 15
Nn
Nn 1c
Nn |
73 | 72, 24 | syl 15 |
. . . . . . . . . . . . . 14
Nn
Nn 1c Nn 1c |
74 | 64, 73 | eqtr2d 2386 |
. . . . . . . . . . . . 13
Nn
Nn 1c
|
75 | 74 | adantlr 695 |
. . . . . . . . . . . 12
Nn Nn 1c |
76 | | simplr 731 |
. . . . . . . . . . . 12
Nn Nn 1c |
77 | 75, 76 | eqeltrrd 2428 |
. . . . . . . . . . 11
Nn Nn 1c |
78 | 77 | ex 423 |
. . . . . . . . . 10
Nn Nn 1c |
79 | 78 | rexlimdva 2739 |
. . . . . . . . 9
Nn
Nn 1c |
80 | 63, 79 | syl5bi 208 |
. . . . . . . 8
Nn Phi
|
81 | 61, 80 | syl5 28 |
. . . . . . 7
Nn Phi Phi Phi |
82 | 81 | exp3a 425 |
. . . . . 6
Nn Phi Phi Phi |
83 | 82 | adantr 451 |
. . . . 5
Nn Phi Phi Phi |
84 | 59, 83 | mpd 14 |
. . . 4
Nn Phi Phi |
85 | 49, 84 | pm2.61ian 765 |
. . 3
Phi Phi
|
86 | 85 | com12 27 |
. 2
Phi
Phi
|
87 | 86 | ssrdv 3279 |
1
Phi
Phi
|