NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equsalhwOLD Unicode version

Theorem equsalhwOLD 1839
Description: Obsolete proof of equsalhw 1838 as of 28-Dec-2017. (Contributed by NM, 29-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalhwOLD.1
equsalhwOLD.2
Assertion
Ref Expression
equsalhwOLD
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem equsalhwOLD
StepHypRef Expression
1 equsalhwOLD.2 . . . . 5
2 sp 1747 . . . . . 6
3 equsalhwOLD.1 . . . . . 6
42, 3impbii 180 . . . . 5
51, 4syl6bbr 254 . . . 4
65pm5.74i 236 . . 3
76albii 1566 . 2
83a1d 22 . . . 4
93, 8alrimih 1565 . . 3
10 ax9v 1655 . . . . 5
11 con3 126 . . . . . 6
1211al2imi 1561 . . . . 5
1310, 12mtoi 169 . . . 4
14 ax6o 1750 . . . 4
1513, 14syl 15 . . 3
169, 15impbii 180 . 2
177, 16bitr4i 243 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator