Proof of Theorem equsalhwOLD
Step | Hyp | Ref
| Expression |
1 | | equsalhwOLD.2 |
. . . . 5
⊢ (x = y →
(φ ↔ ψ)) |
2 | | sp 1747 |
. . . . . 6
⊢ (∀xψ → ψ) |
3 | | equsalhwOLD.1 |
. . . . . 6
⊢ (ψ → ∀xψ) |
4 | 2, 3 | impbii 180 |
. . . . 5
⊢ (∀xψ ↔ ψ) |
5 | 1, 4 | syl6bbr 254 |
. . . 4
⊢ (x = y →
(φ ↔ ∀xψ)) |
6 | 5 | pm5.74i 236 |
. . 3
⊢ ((x = y →
φ) ↔ (x = y →
∀xψ)) |
7 | 6 | albii 1566 |
. 2
⊢ (∀x(x = y →
φ) ↔ ∀x(x = y →
∀xψ)) |
8 | 3 | a1d 22 |
. . . 4
⊢ (ψ → (x = y →
∀xψ)) |
9 | 3, 8 | alrimih 1565 |
. . 3
⊢ (ψ → ∀x(x = y →
∀xψ)) |
10 | | ax9v 1655 |
. . . . 5
⊢ ¬ ∀x ¬
x = y |
11 | | con3 126 |
. . . . . 6
⊢ ((x = y →
∀xψ) → (¬ ∀xψ → ¬ x = y)) |
12 | 11 | al2imi 1561 |
. . . . 5
⊢ (∀x(x = y →
∀xψ) → (∀x ¬
∀xψ → ∀x ¬
x = y)) |
13 | 10, 12 | mtoi 169 |
. . . 4
⊢ (∀x(x = y →
∀xψ) → ¬ ∀x ¬
∀xψ) |
14 | | ax6o 1750 |
. . . 4
⊢ (¬ ∀x ¬
∀xψ → ψ) |
15 | 13, 14 | syl 15 |
. . 3
⊢ (∀x(x = y →
∀xψ) → ψ) |
16 | 9, 15 | impbii 180 |
. 2
⊢ (ψ ↔ ∀x(x = y →
∀xψ)) |
17 | 7, 16 | bitr4i 243 |
1
⊢ (∀x(x = y →
φ) ↔ ψ) |