![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > equsalhwOLD | GIF version |
Description: Obsolete proof of equsalhw 1838 as of 28-Dec-2017. (Contributed by NM, 29-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsalhwOLD.1 | ⊢ (ψ → ∀xψ) |
equsalhwOLD.2 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
equsalhwOLD | ⊢ (∀x(x = y → φ) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalhwOLD.2 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
2 | sp 1747 | . . . . . 6 ⊢ (∀xψ → ψ) | |
3 | equsalhwOLD.1 | . . . . . 6 ⊢ (ψ → ∀xψ) | |
4 | 2, 3 | impbii 180 | . . . . 5 ⊢ (∀xψ ↔ ψ) |
5 | 1, 4 | syl6bbr 254 | . . . 4 ⊢ (x = y → (φ ↔ ∀xψ)) |
6 | 5 | pm5.74i 236 | . . 3 ⊢ ((x = y → φ) ↔ (x = y → ∀xψ)) |
7 | 6 | albii 1566 | . 2 ⊢ (∀x(x = y → φ) ↔ ∀x(x = y → ∀xψ)) |
8 | 3 | a1d 22 | . . . 4 ⊢ (ψ → (x = y → ∀xψ)) |
9 | 3, 8 | alrimih 1565 | . . 3 ⊢ (ψ → ∀x(x = y → ∀xψ)) |
10 | ax9v 1655 | . . . . 5 ⊢ ¬ ∀x ¬ x = y | |
11 | con3 126 | . . . . . 6 ⊢ ((x = y → ∀xψ) → (¬ ∀xψ → ¬ x = y)) | |
12 | 11 | al2imi 1561 | . . . . 5 ⊢ (∀x(x = y → ∀xψ) → (∀x ¬ ∀xψ → ∀x ¬ x = y)) |
13 | 10, 12 | mtoi 169 | . . . 4 ⊢ (∀x(x = y → ∀xψ) → ¬ ∀x ¬ ∀xψ) |
14 | ax6o 1750 | . . . 4 ⊢ (¬ ∀x ¬ ∀xψ → ψ) | |
15 | 13, 14 | syl 15 | . . 3 ⊢ (∀x(x = y → ∀xψ) → ψ) |
16 | 9, 15 | impbii 180 | . 2 ⊢ (ψ ↔ ∀x(x = y → ∀xψ)) |
17 | 7, 16 | bitr4i 243 | 1 ⊢ (∀x(x = y → φ) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |