Step | Hyp | Ref
| Expression |
1 | | equequ2 1686 |
. . . . . 6
⊢ (y = z →
(x = y
↔ x = z)) |
2 | 1 | bibi2d 309 |
. . . . 5
⊢ (y = z →
((φ ↔ x = y) ↔
(φ ↔ x = z))) |
3 | 2 | albidv 1625 |
. . . 4
⊢ (y = z →
(∀x(φ ↔
x = y)
↔ ∀x(φ ↔
x = z))) |
4 | 3 | sps 1754 |
. . 3
⊢ (∀y y = z →
(∀x(φ ↔
x = y)
↔ ∀x(φ ↔
x = z))) |
5 | 4 | drex1 1967 |
. 2
⊢ (∀y y = z →
(∃y∀x(φ ↔ x = y) ↔
∃z∀x(φ ↔ x = z))) |
6 | | hbnae 1955 |
. . . . . 6
⊢ (¬ ∀y y = z →
∀y
¬ ∀y y = z) |
7 | | hbnae 1955 |
. . . . . 6
⊢ (¬ ∀y y = z →
∀z
¬ ∀y y = z) |
8 | 6, 7 | alrimih 1565 |
. . . . 5
⊢ (¬ ∀y y = z →
∀y∀z ¬
∀y
y = z) |
9 | | ax-17 1616 |
. . . . . . . 8
⊢ (¬ ∀x(φ ↔ x = w) →
∀z
¬ ∀x(φ ↔
x = w)) |
10 | | equequ2 1686 |
. . . . . . . . . . 11
⊢ (w = y →
(x = w
↔ x = y)) |
11 | 10 | bibi2d 309 |
. . . . . . . . . 10
⊢ (w = y →
((φ ↔ x = w) ↔
(φ ↔ x = y))) |
12 | 11 | albidv 1625 |
. . . . . . . . 9
⊢ (w = y →
(∀x(φ ↔
x = w)
↔ ∀x(φ ↔
x = y))) |
13 | 12 | notbid 285 |
. . . . . . . 8
⊢ (w = y →
(¬ ∀x(φ ↔
x = w)
↔ ¬ ∀x(φ ↔
x = y))) |
14 | 9, 13 | dvelim 2016 |
. . . . . . 7
⊢ (¬ ∀z z = y →
(¬ ∀x(φ ↔
x = y)
→ ∀z ¬ ∀x(φ ↔ x = y))) |
15 | 14 | naecoms 1948 |
. . . . . 6
⊢ (¬ ∀y y = z →
(¬ ∀x(φ ↔
x = y)
→ ∀z ¬ ∀x(φ ↔ x = y))) |
16 | | ax-17 1616 |
. . . . . . 7
⊢ (¬ ∀x(φ ↔ x = w) →
∀y
¬ ∀x(φ ↔
x = w)) |
17 | | equequ2 1686 |
. . . . . . . . . 10
⊢ (w = z →
(x = w
↔ x = z)) |
18 | 17 | bibi2d 309 |
. . . . . . . . 9
⊢ (w = z →
((φ ↔ x = w) ↔
(φ ↔ x = z))) |
19 | 18 | albidv 1625 |
. . . . . . . 8
⊢ (w = z →
(∀x(φ ↔
x = w)
↔ ∀x(φ ↔
x = z))) |
20 | 19 | notbid 285 |
. . . . . . 7
⊢ (w = z →
(¬ ∀x(φ ↔
x = w)
↔ ¬ ∀x(φ ↔
x = z))) |
21 | 16, 20 | dvelim 2016 |
. . . . . 6
⊢ (¬ ∀y y = z →
(¬ ∀x(φ ↔
x = z)
→ ∀y ¬ ∀x(φ ↔ x = z))) |
22 | 3 | notbid 285 |
. . . . . . 7
⊢ (y = z →
(¬ ∀x(φ ↔
x = y)
↔ ¬ ∀x(φ ↔
x = z))) |
23 | 22 | a1i 10 |
. . . . . 6
⊢ (¬ ∀y y = z →
(y = z
→ (¬ ∀x(φ ↔
x = y)
↔ ¬ ∀x(φ ↔
x = z)))) |
24 | 15, 21, 23 | cbv2h 1980 |
. . . . 5
⊢ (∀y∀z ¬
∀y
y = z
→ (∀y ¬ ∀x(φ ↔ x = y) ↔
∀z
¬ ∀x(φ ↔
x = z))) |
25 | 8, 24 | syl 15 |
. . . 4
⊢ (¬ ∀y y = z →
(∀y
¬ ∀x(φ ↔
x = y)
↔ ∀z ¬ ∀x(φ ↔ x = z))) |
26 | 25 | notbid 285 |
. . 3
⊢ (¬ ∀y y = z →
(¬ ∀y ¬ ∀x(φ ↔ x = y) ↔
¬ ∀z ¬ ∀x(φ ↔ x = z))) |
27 | | df-ex 1542 |
. . 3
⊢ (∃y∀x(φ ↔ x = y) ↔
¬ ∀y ¬ ∀x(φ ↔ x = y)) |
28 | | df-ex 1542 |
. . 3
⊢ (∃z∀x(φ ↔ x = z) ↔
¬ ∀z ¬ ∀x(φ ↔ x = z)) |
29 | 26, 27, 28 | 3bitr4g 279 |
. 2
⊢ (¬ ∀y y = z →
(∃y∀x(φ ↔ x = y) ↔
∃z∀x(φ ↔ x = z))) |
30 | 5, 29 | pm2.61i 156 |
1
⊢ (∃y∀x(φ ↔ x = y) ↔
∃z∀x(φ ↔ x = z)) |