NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exintr Unicode version

Theorem exintr 1614
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
Assertion
Ref Expression
exintr

Proof of Theorem exintr
StepHypRef Expression
1 exintrbi 1613 . 2
21biimpd 198 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  ceqsex  2893  r19.2z  3639  pwpw0  3855  pwsnALT  3882
  Copyright terms: Public domain W3C validator