NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ceqsex Unicode version

Theorem ceqsex 2894
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
ceqsex.1  F/
ceqsex.2
ceqsex.3
Assertion
Ref Expression
ceqsex
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsex
StepHypRef Expression
1 ceqsex.1 . . 3  F/
2 ceqsex.3 . . . 4
32biimpa 470 . . 3
41, 3exlimi 1803 . 2
52biimprcd 216 . . . 4
61, 5alrimi 1765 . . 3
7 ceqsex.2 . . . 4
87isseti 2866 . . 3
9 exintr 1614 . . 3
106, 8, 9ee10 1376 . 2
114, 10impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540  wex 1541   F/wnf 1544   wceq 1642   wcel 1710  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by:  ceqsexv  2895  ceqsex2  2896
  Copyright terms: Public domain W3C validator