New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwpw0 Unicode version

Theorem pwpw0 3855
 Description: Compute the power set of the power set of the empty set. (See pw0 4160 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 3881, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
pwpw0

Proof of Theorem pwpw0
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3262 . . . . . . . . 9
2 elsn 3748 . . . . . . . . . . 11
32imbi2i 303 . . . . . . . . . 10
43albii 1566 . . . . . . . . 9
51, 4bitri 240 . . . . . . . 8
6 neq0 3560 . . . . . . . . . 10
7 exintr 1614 . . . . . . . . . 10
86, 7syl5bi 208 . . . . . . . . 9
9 exancom 1586 . . . . . . . . . . 11
10 df-clel 2349 . . . . . . . . . . 11
119, 10bitr4i 243 . . . . . . . . . 10
12 snssi 3852 . . . . . . . . . 10
1311, 12sylbi 187 . . . . . . . . 9
148, 13syl6 29 . . . . . . . 8
155, 14sylbi 187 . . . . . . 7
1615anc2li 540 . . . . . 6
17 eqss 3287 . . . . . 6
1816, 17syl6ibr 218 . . . . 5
1918orrd 367 . . . 4
20 0ss 3579 . . . . . 6
21 sseq1 3292 . . . . . 6
2220, 21mpbiri 224 . . . . 5
23 eqimss 3323 . . . . 5
2422, 23jaoi 368 . . . 4
2519, 24impbii 180 . . 3
2625abbii 2465 . 2
27 df-pw 3724 . 2
28 dfpr2 3749 . 2
2926, 27, 283eqtr4i 2383 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wo 357   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  cab 2339   wss 3257  c0 3550  cpw 3722  csn 3737  cpr 3738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-pw 3724  df-sn 3741  df-pr 3742 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator