| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pwsnALT | Unicode version | ||
| Description: The power set of a singleton (direct proof). TO DO - should we keep this? (Contributed by NM, 5-Jun-2006.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pwsnALT | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss2 3263 | 
. . . . . . . . 9
 | |
| 2 | elsn 3749 | 
. . . . . . . . . . 11
 | |
| 3 | 2 | imbi2i 303 | 
. . . . . . . . . 10
 | 
| 4 | 3 | albii 1566 | 
. . . . . . . . 9
 | 
| 5 | 1, 4 | bitri 240 | 
. . . . . . . 8
 | 
| 6 | neq0 3561 | 
. . . . . . . . . 10
 | |
| 7 | exintr 1614 | 
. . . . . . . . . 10
 | |
| 8 | 6, 7 | syl5bi 208 | 
. . . . . . . . 9
 | 
| 9 | df-clel 2349 | 
. . . . . . . . . . 11
 | |
| 10 | exancom 1586 | 
. . . . . . . . . . 11
 | |
| 11 | 9, 10 | bitr2i 241 | 
. . . . . . . . . 10
 | 
| 12 | snssi 3853 | 
. . . . . . . . . 10
 | |
| 13 | 11, 12 | sylbi 187 | 
. . . . . . . . 9
 | 
| 14 | 8, 13 | syl6 29 | 
. . . . . . . 8
 | 
| 15 | 5, 14 | sylbi 187 | 
. . . . . . 7
 | 
| 16 | 15 | anc2li 540 | 
. . . . . 6
 | 
| 17 | eqss 3288 | 
. . . . . 6
 | |
| 18 | 16, 17 | syl6ibr 218 | 
. . . . 5
 | 
| 19 | 18 | orrd 367 | 
. . . 4
 | 
| 20 | 0ss 3580 | 
. . . . . 6
 | |
| 21 | sseq1 3293 | 
. . . . . 6
 | |
| 22 | 20, 21 | mpbiri 224 | 
. . . . 5
 | 
| 23 | eqimss 3324 | 
. . . . 5
 | |
| 24 | 22, 23 | jaoi 368 | 
. . . 4
 | 
| 25 | 19, 24 | impbii 180 | 
. . 3
 | 
| 26 | 25 | abbii 2466 | 
. 2
 | 
| 27 | df-pw 3725 | 
. 2
 | |
| 28 | dfpr2 3750 | 
. 2
 | |
| 29 | 26, 27, 28 | 3eqtr4i 2383 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |