NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fconstopab Unicode version

Theorem fconstopab 4816
Description: Representation of a constant function using ordered pairs. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
fconstopab
Distinct variable groups:   ,,   ,,

Proof of Theorem fconstopab
StepHypRef Expression
1 df-xp 4785 . 2
2 df-sn 3742 . . . . 5
32abeq2i 2461 . . . 4
43anbi2i 675 . . 3
54opabbii 4627 . 2
61, 5eqtri 2373 1
Colors of variables: wff setvar class
Syntax hints:   wa 358   wceq 1642   wcel 1710  csn 3738  copab 4623   cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sn 3742  df-opab 4624  df-xp 4785
This theorem is referenced by:  fconst  5251  fopabsn  5442  fconstmpt  5682
  Copyright terms: Public domain W3C validator