New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi2i | Unicode version |
Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
Ref | Expression |
---|---|
anbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 | |
2 | 1 | a1i 10 | . 2 |
3 | 2 | pm5.32i 618 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi12i 678 an4 797 an42 798 anandir 802 dfbi3 863 dn1 932 nannan 1291 cadan 1392 cadcoma 1395 nic-mpALT 1437 nic-axALT 1439 19.35 1600 19.27 1869 3exdistr 1910 4exdistr 1911 sb6 2099 2sb5 2112 2sb5rf 2117 sbel2x 2125 eu2 2229 eu3 2230 mo4f 2236 eu5 2242 eu4 2243 euan 2261 2mos 2283 2eu4 2287 2eu6 2289 clelab 2474 nonconne 2524 r2exf 2651 ceqsex3v 2898 ceqsex4v 2899 ceqsex8v 2901 reu2 3025 reu6 3026 reu4 3031 reu7 3032 2reu5lem3 3044 2reu5 3045 rmo3 3134 dfpss2 3355 difdif 3393 inass 3466 dfss4 3490 dfin2 3492 indi 3502 indifdir 3512 difin0ss 3617 inssdif0 3618 ssunpr 3869 dfpss4 3889 unipr 3906 uniun 3911 uniin 3912 iunin2 4031 iundif2 4034 iindif2 4036 iinin2 4037 elpw1 4145 eluni1g 4173 opkelimagekg 4272 xpkvexg 4286 sikexlem 4296 dfimak2 4299 dfpw12 4302 insklem 4305 addcass 4416 nnsucelr 4429 nndisjeq 4430 ltfinex 4465 ncfinraise 4482 nnpw1ex 4485 nnadjoin 4521 tfinnn 4535 eqvinop 4607 setconslem4 4735 fconstopab 4816 opeliunxp 4821 xpundi 4833 elcnv2 4891 cnvuni 4896 brres 4950 imai 5011 intasym 5029 imainss 5043 ssrnres 5060 cnvresima 5078 coundir 5084 rnco 5088 coass 5098 fncnv 5159 funcnvuni 5162 imadif 5172 iunfopab 5205 fint 5246 fin 5247 dff12 5258 f1funfun 5264 fores 5279 dff1o4 5295 f1ocnvb 5299 eqfnfv3 5395 unpreima 5409 inpreima 5410 ffnfvf 5429 fsn2 5435 funiunfv 5468 dff13f 5473 isocnv2 5493 isomin 5497 isoini 5498 dmsi 5520 ffnov 5588 eqfnov 5590 foov 5607 mptpreima 5683 dmmpt 5684 brsnsi2 5777 trtxp 5782 brtxp 5784 restxp 5787 oqelins4 5795 addcfnex 5825 brpprod 5840 fnfullfunlem1 5857 fvfullfunlem1 5862 fvfullfunlem3 5864 pmvalg 6011 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enprmaplem1 6077 enprmaplem4 6080 lecex 6116 ovmuc 6131 ce0nn 6181 nclennlem1 6249 addccan2nclem1 6264 nmembers1lem1 6269 nncdiv3lem1 6276 nnc3n3p1 6279 spacis 6289 nchoicelem16 6305 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |