![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > anbi2i | Unicode version |
Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 10 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32i 618 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi12i 678 an4 797 an42 798 anandir 802 dfbi3 863 dn1 932 nannan 1291 cadan 1392 cadcoma 1395 nic-mpALT 1437 nic-axALT 1439 19.35 1600 19.27 1869 3exdistr 1910 4exdistr 1911 sb6 2099 2sb5 2112 2sb5rf 2117 sbel2x 2125 eu2 2229 eu3 2230 mo4f 2236 eu5 2242 eu4 2243 euan 2261 2mos 2283 2eu4 2287 2eu6 2289 clelab 2473 nonconne 2523 r2exf 2650 ceqsex3v 2897 ceqsex4v 2898 ceqsex8v 2900 reu2 3024 reu6 3025 reu4 3030 reu7 3031 2reu5lem3 3043 2reu5 3044 rmo3 3133 dfpss2 3354 difdif 3392 inass 3465 dfss4 3489 dfin2 3491 indi 3501 indifdir 3511 difin0ss 3616 inssdif0 3617 ssunpr 3868 dfpss4 3888 unipr 3905 uniun 3910 uniin 3911 iunin2 4030 iundif2 4033 iindif2 4035 iinin2 4036 elpw1 4144 eluni1g 4172 opkelimagekg 4271 xpkvexg 4285 sikexlem 4295 dfimak2 4298 dfpw12 4301 insklem 4304 addcass 4415 nnsucelr 4428 nndisjeq 4429 ltfinex 4464 ncfinraise 4481 nnpw1ex 4484 nnadjoin 4520 tfinnn 4534 eqvinop 4606 setconslem4 4734 fconstopab 4815 opeliunxp 4820 xpundi 4832 elcnv2 4890 cnvuni 4895 brres 4949 imai 5010 intasym 5028 imainss 5042 ssrnres 5059 cnvresima 5077 coundir 5083 rnco 5087 coass 5097 fncnv 5158 funcnvuni 5161 imadif 5171 iunfopab 5204 fint 5245 fin 5246 dff12 5257 f1funfun 5263 fores 5278 dff1o4 5294 f1ocnvb 5298 eqfnfv3 5394 unpreima 5408 inpreima 5409 ffnfvf 5428 fsn2 5434 funiunfv 5467 dff13f 5472 isocnv2 5492 isomin 5496 isoini 5497 dmsi 5519 ffnov 5587 eqfnov 5589 foov 5606 mptpreima 5682 dmmpt 5683 brsnsi2 5776 trtxp 5781 brtxp 5783 restxp 5786 oqelins4 5794 addcfnex 5824 brpprod 5839 fnfullfunlem1 5856 fvfullfunlem1 5861 fvfullfunlem3 5863 pmvalg 6010 xpassen 6057 enpw1lem1 6061 enmap2lem1 6063 enprmaplem1 6076 enprmaplem4 6079 lecex 6115 ovmuc 6130 ce0nn 6180 nclennlem1 6248 addccan2nclem1 6263 nmembers1lem1 6268 nncdiv3lem1 6275 nnc3n3p1 6278 spacis 6288 nchoicelem16 6304 dmfrec 6316 |
Copyright terms: Public domain | W3C validator |