New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opabbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 |
Ref | Expression |
---|---|
opabbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . 2 | |
2 | opabbii.1 | . . . 4 | |
3 | 2 | a1i 10 | . . 3 |
4 | 3 | opabbidv 4626 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-opab 4624 |
This theorem is referenced by: df1st2 4739 dfsset2 4744 dfco1 4749 dfsi2 4752 fconstopab 4816 xpundi 4833 xpundir 4834 inxp 4864 opabbi2i 4867 cnvco 4895 resopab 5000 opabresid 5004 cnvi 5033 cnvun 5034 cnvxp 5044 coundi 5083 coundir 5084 df2nd2 5112 fvopabg 5392 cbvoprab1 5568 cbvoprab12 5570 dmoprabss 5576 resoprab 5582 fnov 5592 ov6g 5601 mpt2mptx 5709 mptv 5719 scancan 6332 |
Copyright terms: Public domain | W3C validator |