NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinxprg Unicode version

Theorem iinxprg 4044
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1
iinxprg.2
Assertion
Ref Expression
iinxprg
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem iinxprg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5
21eleq2d 2420 . . . 4
3 iinxprg.2 . . . . 5
43eleq2d 2420 . . . 4
52, 4ralprg 3776 . . 3
6 vex 2863 . . . 4
7 eliin 3975 . . . 4
86, 7ax-mp 5 . . 3
9 elin 3220 . . 3
105, 8, 93bitr4g 279 . 2
1110eqrdv 2351 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  wral 2615  cvv 2860   cin 3209  cpr 3739  ciin 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-sn 3742  df-pr 3743  df-iin 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator