NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinxprg GIF version

Theorem iinxprg 4044
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1 (x = AC = D)
iinxprg.2 (x = BC = E)
Assertion
Ref Expression
iinxprg ((A V B W) → x {A, B}C = (DE))
Distinct variable groups:   x,A   x,B   x,D   x,E
Allowed substitution hints:   C(x)   V(x)   W(x)

Proof of Theorem iinxprg
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5 (x = AC = D)
21eleq2d 2420 . . . 4 (x = A → (y Cy D))
3 iinxprg.2 . . . . 5 (x = BC = E)
43eleq2d 2420 . . . 4 (x = B → (y Cy E))
52, 4ralprg 3776 . . 3 ((A V B W) → (x {A, B}y C ↔ (y D y E)))
6 vex 2863 . . . 4 y V
7 eliin 3975 . . . 4 (y V → (y x {A, B}Cx {A, B}y C))
86, 7ax-mp 5 . . 3 (y x {A, B}Cx {A, B}y C)
9 elin 3220 . . 3 (y (DE) ↔ (y D y E))
105, 8, 93bitr4g 279 . 2 ((A V B W) → (y x {A, B}Cy (DE)))
1110eqrdv 2351 1 ((A V B W) → x {A, B}C = (DE))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wral 2615  Vcvv 2860  cin 3209  {cpr 3739  ciin 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-sn 3742  df-pr 3743  df-iin 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator