New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iinxprg | GIF version |
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
iinxprg.1 | ⊢ (x = A → C = D) |
iinxprg.2 | ⊢ (x = B → C = E) |
Ref | Expression |
---|---|
iinxprg | ⊢ ((A ∈ V ∧ B ∈ W) → ∩x ∈ {A, B}C = (D ∩ E)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinxprg.1 | . . . . 5 ⊢ (x = A → C = D) | |
2 | 1 | eleq2d 2420 | . . . 4 ⊢ (x = A → (y ∈ C ↔ y ∈ D)) |
3 | iinxprg.2 | . . . . 5 ⊢ (x = B → C = E) | |
4 | 3 | eleq2d 2420 | . . . 4 ⊢ (x = B → (y ∈ C ↔ y ∈ E)) |
5 | 2, 4 | ralprg 3776 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → (∀x ∈ {A, B}y ∈ C ↔ (y ∈ D ∧ y ∈ E))) |
6 | vex 2863 | . . . 4 ⊢ y ∈ V | |
7 | eliin 3975 | . . . 4 ⊢ (y ∈ V → (y ∈ ∩x ∈ {A, B}C ↔ ∀x ∈ {A, B}y ∈ C)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (y ∈ ∩x ∈ {A, B}C ↔ ∀x ∈ {A, B}y ∈ C) |
9 | elin 3220 | . . 3 ⊢ (y ∈ (D ∩ E) ↔ (y ∈ D ∧ y ∈ E)) | |
10 | 5, 8, 9 | 3bitr4g 279 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → (y ∈ ∩x ∈ {A, B}C ↔ y ∈ (D ∩ E))) |
11 | 10 | eqrdv 2351 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → ∩x ∈ {A, B}C = (D ∩ E)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 Vcvv 2860 ∩ cin 3209 {cpr 3739 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-sn 3742 df-pr 3743 df-iin 3973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |