![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > simpr | Unicode version |
Description: Elimination of a conjunct. Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
simpr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | imp 418 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simpri 448 adantld 453 ibar 490 pm3.42 543 pm3.4 544 prth 554 sylancom 648 adantll 694 adantrl 696 adantlll 698 adantlrl 700 adantrll 702 adantrrl 704 simpllr 735 simplrr 737 simprlr 739 simprrr 741 anabs7 785 jcab 833 pm4.39 841 pm4.38 842 intnan 880 intnand 882 bimsc1 904 niabn 917 dedlem0b 919 simp1r 980 simp2r 982 simp3r 984 3anandirs 1284 truan 1331 cadan 1392 19.26 1593 19.40 1609 sbft 2025 moan 2255 euan 2261 datisi 2313 fresison 2321 pm2.61da3ne 2596 rexex 2673 r19.26 2746 r19.40 2762 cbvraldva2 2839 cbvrexdva2 2840 gencbvex 2901 rspct 2948 rspcimdv 2956 rr19.28v 2981 reu6 3025 rmob 3134 csbiebt 3172 rabssab 3352 difrab 3529 dfnfc2 3909 intmin4 3955 iota2df 4365 iota2 4367 0nelsuc 4400 nndisjeq 4429 ltfinp1 4462 lenltfin 4469 ncfineleq 4477 evenodddisj 4516 nnadjoin 4520 tfinnn 4534 vfintle 4546 vfinspsslem1 4550 dfphi2 4569 phi11lem1 4595 ideqg 4868 imassrn 5009 xpcan 5057 funopab4 5141 fun11uni 5162 fvelrn 5413 dffo3 5422 ffvresb 5431 eqfnov2 5590 weds 5938 ersymb 5953 erref 5959 elnc 6125 eqncg 6126 ncdisjun 6136 peano4nc 6150 eqtc 6161 leconnnc 6218 taddc 6229 lemuc1 6253 addccan2nc 6265 nchoicelem6 6294 nchoicelem8 6296 nchoicelem17 6305 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |