NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intnan GIF version

Theorem intnan 880
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
Hypothesis
Ref Expression
intnan.1 ¬ φ
Assertion
Ref Expression
intnan ¬ (ψ φ)

Proof of Theorem intnan
StepHypRef Expression
1 intnan.1 . 2 ¬ φ
2 simpr 447 . 2 ((ψ φ) → φ)
31, 2mto 167 1 ¬ (ψ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  bianfi  891  truanfal  1337  indifdir  3512  eqtfinrelk  4487  co01  5094  imadif  5172  xpnedisj  5514  2p1e3c  6157  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator