NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunab Unicode version

Theorem iunab 4013
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2490 . . . 4  F/_
2 nfab1 2492 . . . 4  F/_
31, 2nfiun 3996 . . 3  F/_
4 nfab1 2492 . . 3  F/_
53, 4cleqf 2514 . 2
6 abid 2341 . . . 4
76rexbii 2640 . . 3
8 eliun 3974 . . 3
9 abid 2341 . . 3
107, 8, 93bitr4i 268 . 2
115, 10mpgbir 1550 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wceq 1642   wcel 1710  cab 2339  wrex 2616  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-iun 3972
This theorem is referenced by:  iunrab  4014  iunid  4022  dfimafn2  5368
  Copyright terms: Public domain W3C validator