New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexbii | Unicode version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 |
Ref | Expression |
---|---|
rexbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . . 4 | |
2 | 1 | a1i 10 | . . 3 |
3 | 2 | rexbidv 2636 | . 2 |
4 | 3 | trud 1323 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wtru 1316 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-rex 2621 |
This theorem is referenced by: 2rexbii 2642 rexanali 2661 r19.29r 2756 r19.42v 2766 r19.43 2767 rexcom13 2774 rexrot4 2775 3reeanv 2780 2ralor 2781 cbvrex2v 2845 rexcom4 2879 rexcom4a 2880 rexcom4b 2881 ceqsrex2v 2975 reu7 3032 0el 3567 uni0b 3917 iuncom 3976 iuncom4 3977 iuniin 3980 iunab 4013 iunn0 4027 iunin2 4031 iundif2 4034 iunun 4047 iunxiun 4049 iunpwss 4056 elpw12 4146 snelpw1 4147 imacok 4283 dfuni3 4316 dfint3 4319 unipw1 4326 dfaddc2 4382 addcid1 4406 nnc0suc 4413 elsuc 4414 addcass 4416 nncaddccl 4420 nndisjeq 4430 ltfinex 4465 ltfintri 4467 ncfinlowerlem1 4483 nnpw1ex 4485 evenfinex 4504 oddfinex 4505 dfevenfin2 4513 dfoddfin2 4514 evenodddisjlem1 4516 nnpweqlem1 4523 vfinspss 4552 vfinspclt 4553 vfinncsp 4555 dfphi2 4570 dfop2lem2 4575 dfop2 4576 dfproj12 4577 dfproj22 4578 proj2op 4602 phialllem1 4617 setconslem6 4737 dfima2 4746 elima3 4757 xpiundi 4818 xpiundir 4819 rexxpf 4829 iunxpf 4830 cnvuni 4896 elimapw1 4945 elimapw12 4946 elimapw13 4947 dfima4 4953 dminxp 5062 imaco 5087 coiun 5091 fnrnfv 5365 abrexco 5464 imaiun 5465 dfdm4 5508 dfrn5 5509 xpnedisj 5514 oqelins4 5795 otsnelsi3 5806 addcfnex 5825 funsex 5829 frds 5936 qsexg 5983 qsid 5991 mapexi 6004 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 enpw1pw 6076 ovmuc 6131 ovcelem1 6172 ce0nn 6181 nc0suc 6218 dflec3 6222 nclennlem1 6249 nncdiv3lem1 6276 nncdiv3lem2 6277 nncdiv3 6278 nnc3n3p1 6279 nchoicelem11 6300 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |