New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eliun | Unicode version |
Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 | |
2 | elex 2868 | . . 3 | |
3 | 2 | rexlimivw 2735 | . 2 |
4 | eleq1 2413 | . . . 4 | |
5 | 4 | rexbidv 2636 | . . 3 |
6 | df-iun 3972 | . . 3 | |
7 | 5, 6 | elab2g 2988 | . 2 |
8 | 1, 3, 7 | pm5.21nii 342 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 wcel 1710 wrex 2616 cvv 2860 ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-iun 3972 |
This theorem is referenced by: iuncom 3976 iuncom4 3977 iunconst 3978 iuniin 3980 iunss1 3981 ss2iun 3985 dfiun2g 4000 ssiun 4009 ssiun2 4010 iunab 4013 iun0 4023 0iun 4024 iunn0 4027 iunin2 4031 iundif2 4034 iindif2 4036 iunxsng 4045 iunun 4047 iunxun 4048 iunxiun 4049 iunpwss 4056 xpiundi 4818 xpiundir 4819 iunxpf 4830 cnvuni 4896 dmuni 4915 rnuni 5039 dfco2 5081 dfco2a 5082 coiun 5091 fun11iun 5306 imaiun 5465 eluniima 5470 |
Copyright terms: Public domain | W3C validator |