| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iuneq2 | Unicode version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2iun 3985 |
. . 3
| |
| 2 | ss2iun 3985 |
. . 3
| |
| 3 | 1, 2 | anim12i 549 |
. 2
|
| 4 | eqss 3288 |
. . . 4
| |
| 5 | 4 | ralbii 2639 |
. . 3
|
| 6 | r19.26 2747 |
. . 3
| |
| 7 | 5, 6 | bitri 240 |
. 2
|
| 8 | eqss 3288 |
. 2
| |
| 9 | 3, 7, 8 | 3imtr4i 257 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
| This theorem is referenced by: iuneq2i 3988 iuneq2dv 3991 |
| Copyright terms: Public domain | W3C validator |