New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anim12i | Unicode version |
Description: Conjoin antecedents and consequents of two premises. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Dec-2013.) |
Ref | Expression |
---|---|
anim12i.1 | |
anim12i.2 |
Ref | Expression |
---|---|
anim12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12i.1 | . 2 | |
2 | anim12i.2 | . 2 | |
3 | id 19 | . 2 | |
4 | 1, 2, 3 | syl2an 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anim12ci 550 anim1i 551 anim2i 552 sbimi 1652 2mo 2282 cgsex2g 2892 cgsex4g 2893 spc2egv 2942 sseq2 3294 uneqin 3507 undif3 3516 ssunieq 3925 iuneq1 3983 iuneq2 3986 tfin11 4494 sfinltfin 4536 copsex2t 4609 vtoclr 4817 coeq1 4875 coeq2 4876 brco 4884 cnveq 4887 dmeq 4908 dfco2a 5082 funeq 5128 funun 5147 2elresin 5195 funssxp 5234 fssres 5239 f1co 5265 f1ores 5301 resdif 5307 f1oco 5309 fvun 5379 fvreseq 5399 brswap 5510 fununiq 5518 ndmovdistr 5620 ndmovord 5621 trtxp 5782 fntxp 5805 qrpprod 5837 fnpprod 5844 f1opprod 5845 enprmaplem3 6079 peano4nc 6151 cecl 6187 |
Copyright terms: Public domain | W3C validator |