New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3imtr4i | Unicode version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | |
3imtr4.2 | |
3imtr4.3 |
Ref | Expression |
---|---|
3imtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 | |
2 | 3imtr4.1 | . . 3 | |
3 | 1, 2 | sylbi 187 | . 2 |
4 | 3imtr4.3 | . 2 | |
5 | 3, 4 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: hbxfrbi 1568 19.30 1604 sbimi 1652 hba1 1786 nfimdOLD 1809 euan 2261 ralimi2 2687 reximi2 2721 r19.28av 2754 r19.29r 2756 r19.30 2757 elex 2868 rmoan 3035 rmoimi2 3038 sseq2 3294 rabss2 3350 undif4 3608 r19.2zb 3641 ralf0 3657 difprsnss 3847 snsspw 3878 uniin 3912 intss 3948 iuniin 3980 iuneq1 3983 iuneq2 3986 iunpwss 4056 iotaex 4357 peano2 4404 nnpw1ex 4485 spfininduct 4541 brex 4690 coeq1 4875 coeq2 4876 cnveq 4887 dmeq 4908 dmin 4914 brelrn 4961 dmcoss 4972 rncoeq 4976 dminss 5042 imainss 5043 dfco2a 5082 funmo 5126 funeq 5128 funun 5147 fununi 5161 2elresin 5195 fco 5232 f1co 5265 fof 5270 foco 5280 f1ores 5301 f1oco 5309 fvpr2 5451 isocnv 5492 isotr 5496 oprabid 5551 fntxp 5805 fnpprod 5844 f1opprod 5845 ider 5944 ssetpov 5945 eqer 5962 map0 6026 unen 6049 pw1fin 6170 cenc 6182 lecidg 6197 lec0cg 6199 lecncvg 6200 sbth 6207 addlec 6209 nc0le1 6217 ce2le 6234 dmfrec 6317 scancan 6332 |
Copyright terms: Public domain | W3C validator |