New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbii | Unicode version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 |
Ref | Expression |
---|---|
ralbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . . 4 | |
2 | 1 | a1i 10 | . . 3 |
3 | 2 | ralbidv 2634 | . 2 |
4 | 3 | trud 1323 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wtru 1316 wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2619 |
This theorem is referenced by: 2ralbii 2640 ralinexa 2659 r3al 2671 r19.26-2 2747 r19.26-3 2748 ralbiim 2751 r19.28av 2753 r19.30 2756 r19.32v 2757 r19.35 2758 cbvral2v 2843 cbvral3v 2845 sbralie 2848 ralcom4 2877 reu8 3032 2reuswap 3038 2reu5lem2 3042 eqsn 3867 disj5 3890 uni0b 3916 uni0c 3917 ssint 3942 iuniin 3979 iuneq2 3985 iunss 4007 ssiinf 4015 iinab 4027 iinun2 4032 iindif2 4035 iinin2 4036 iinuni 4049 sspwuni 4051 iinpw 4054 evenodddisjlem1 4515 evenodddisj 4516 nnadjoinpw 4521 rexiunxp 4824 ralxpf 4827 rninxp 5060 dminxp 5061 cnviin 5118 dffun9 5135 funcnv3 5157 fncnv 5158 fnres 5199 fnopabg 5205 fnopab2g 5206 fint 5245 funimass4 5368 funconstss 5406 dff13f 5472 foov 5606 dfnnc3 5885 |
Copyright terms: Public domain | W3C validator |