![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > jctir | Unicode version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
jctil.2 |
![]() ![]() |
Ref | Expression |
---|---|
jctir |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jctil.2 |
. . 3
![]() ![]() | |
3 | 2 | a1i 10 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | jca 518 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: jctr 526 equvini 1987 uniintsn 3963 ltfinp1 4462 vfinspeqtncv 4553 foimacnv 5303 respreima 5410 fpr 5437 spacssnc 6284 |
Copyright terms: Public domain | W3C validator |