New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinspeqtncv | Unicode version |
Description: If the universe is finite, then Spfin is equal to its T raisings and the cardinality of the universe. Theorem X.1.61 of [Rosser] p. 536. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
vfinspeqtncv | Fin Spfin Spfin Tfin Ncfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspss 4551 | . 2 Fin Spfin Spfin Tfin Ncfin | |
2 | vfinspclt 4552 | . . . . . . 7 Fin Spfin Tfin Spfin | |
3 | eleq1 2413 | . . . . . . . . 9 Tfin Spfin Tfin Spfin | |
4 | 3 | biimprd 214 | . . . . . . . 8 Tfin Tfin Spfin Spfin |
5 | 4 | com12 27 | . . . . . . 7 Tfin Spfin Tfin Spfin |
6 | 2, 5 | syl 15 | . . . . . 6 Fin Spfin Tfin Spfin |
7 | 6 | rexlimdva 2738 | . . . . 5 Fin Spfin Tfin Spfin |
8 | 7 | abssdv 3340 | . . . 4 Fin Spfin Tfin Spfin |
9 | ncvspfin 4538 | . . . . 5 Ncfin Spfin | |
10 | ncfinex 4472 | . . . . . 6 Ncfin | |
11 | 10 | snss 3838 | . . . . 5 Ncfin Spfin Ncfin Spfin |
12 | 9, 11 | mpbi 199 | . . . 4 Ncfin Spfin |
13 | 8, 12 | jctir 524 | . . 3 Fin Spfin Tfin Spfin Ncfin Spfin |
14 | unss 3437 | . . 3 Spfin Tfin Spfin Ncfin Spfin Spfin Tfin Ncfin Spfin | |
15 | 13, 14 | sylib 188 | . 2 Fin Spfin Tfin Ncfin Spfin |
16 | 1, 15 | eqssd 3289 | 1 Fin Spfin Spfin Tfin Ncfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wcel 1710 cab 2339 wrex 2615 cvv 2859 cun 3207 wss 3257 csn 3737 Fin cfin 4376 Ncfin cncfin 4434 Tfin ctfin 4435 Spfin cspfin 4439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-sfin 4446 df-spfin 4447 |
This theorem is referenced by: vfinncsp 4554 |
Copyright terms: Public domain | W3C validator |