NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spacssnc Unicode version

Theorem spacssnc 6285
Description: The special set generator generates a set of cardinals. (Contributed by SF, 13-Mar-2015.)
Assertion
Ref Expression
spacssnc NC Spac NC

Proof of Theorem spacssnc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spacval 6283 . 2 NC Spac Clos1 NC NC 2cc
2 snex 4112 . . . 4
3 spacvallem1 6282 . . . 4 NC NC 2cc
4 eqid 2353 . . . 4 Clos1 NC NC 2cc Clos1 NC NC 2cc
52, 3, 4clos1baseima 5884 . . 3 Clos1 NC NC 2cc NC NC 2cc Clos1 NC NC 2cc
6 snssi 3853 . . . . 5 NC NC
7 imassrn 5010 . . . . . 6 NC NC 2cc Clos1 NC NC 2cc NC NC 2cc
8 rnopab 4968 . . . . . . 7 NC NC 2cc NC NC 2cc
9 simp2 956 . . . . . . . . 9 NC NC 2cc NC
109exlimiv 1634 . . . . . . . 8 NC NC 2cc NC
1110abssi 3342 . . . . . . 7 NC NC 2cc NC
128, 11eqsstri 3302 . . . . . 6 NC NC 2cc NC
137, 12sstri 3282 . . . . 5 NC NC 2cc Clos1 NC NC 2cc NC
146, 13jctir 524 . . . 4 NC NC NC NC 2cc Clos1 NC NC 2cc NC
15 unss 3438 . . . 4 NC NC NC 2cc Clos1 NC NC 2cc NC NC NC 2cc Clos1 NC NC 2cc NC
1614, 15sylib 188 . . 3 NC NC NC 2cc Clos1 NC NC 2cc NC
175, 16syl5eqss 3316 . 2 NC Clos1 NC NC 2cc NC
181, 17eqsstrd 3306 1 NC Spac NC
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cab 2339   cun 3208   wss 3258  csn 3738  copab 4623  cima 4723   crn 4774  cfv 4782  (class class class)co 5526   Clos1 cclos1 5873   NC cncs 6089  2cc2c 6095   ↑c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  spaccl  6287  spacind  6288  nchoicelem4  6293  nchoicelem6  6295
  Copyright terms: Public domain W3C validator