| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > uniintsn | Unicode version | ||
| Description: Two ways to express
" |
| Ref | Expression |
|---|---|
| uniintsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vn0 3558 |
. . . . . 6
| |
| 2 | inteq 3930 |
. . . . . . . . . . 11
| |
| 3 | int0 3941 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | syl6eq 2401 |
. . . . . . . . . 10
|
| 5 | 4 | adantl 452 |
. . . . . . . . 9
|
| 6 | unieq 3901 |
. . . . . . . . . . . 12
| |
| 7 | uni0 3919 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | syl6eq 2401 |
. . . . . . . . . . 11
|
| 9 | eqeq1 2359 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | syl5ib 210 |
. . . . . . . . . 10
|
| 11 | 10 | imp 418 |
. . . . . . . . 9
|
| 12 | 5, 11 | eqtr3d 2387 |
. . . . . . . 8
|
| 13 | 12 | ex 423 |
. . . . . . 7
|
| 14 | 13 | necon3d 2555 |
. . . . . 6
|
| 15 | 1, 14 | mpi 16 |
. . . . 5
|
| 16 | n0 3560 |
. . . . 5
| |
| 17 | 15, 16 | sylib 188 |
. . . 4
|
| 18 | vex 2863 |
. . . . . . 7
| |
| 19 | vex 2863 |
. . . . . . 7
| |
| 20 | 18, 19 | prss 3862 |
. . . . . 6
|
| 21 | uniss 3913 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | adantl 452 |
. . . . . . . . . . . 12
|
| 23 | simpl 443 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | sseqtrd 3308 |
. . . . . . . . . . 11
|
| 25 | intss 3948 |
. . . . . . . . . . . 12
| |
| 26 | 25 | adantl 452 |
. . . . . . . . . . 11
|
| 27 | 24, 26 | sstrd 3283 |
. . . . . . . . . 10
|
| 28 | 18, 19 | unipr 3906 |
. . . . . . . . . 10
|
| 29 | 18, 19 | intpr 3960 |
. . . . . . . . . 10
|
| 30 | 27, 28, 29 | 3sstr3g 3312 |
. . . . . . . . 9
|
| 31 | inss1 3476 |
. . . . . . . . . 10
| |
| 32 | ssun1 3427 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | sstri 3282 |
. . . . . . . . 9
|
| 34 | 30, 33 | jctir 524 |
. . . . . . . 8
|
| 35 | eqss 3288 |
. . . . . . . . 9
| |
| 36 | uneqin 3507 |
. . . . . . . . 9
| |
| 37 | 35, 36 | bitr3i 242 |
. . . . . . . 8
|
| 38 | 34, 37 | sylib 188 |
. . . . . . 7
|
| 39 | 38 | ex 423 |
. . . . . 6
|
| 40 | 20, 39 | syl5bi 208 |
. . . . 5
|
| 41 | 40 | alrimivv 1632 |
. . . 4
|
| 42 | 17, 41 | jca 518 |
. . 3
|
| 43 | euabsn 3793 |
. . . 4
| |
| 44 | eleq1 2413 |
. . . . 5
| |
| 45 | 44 | eu4 2243 |
. . . 4
|
| 46 | abid2 2471 |
. . . . . 6
| |
| 47 | 46 | eqeq1i 2360 |
. . . . 5
|
| 48 | 47 | exbii 1582 |
. . . 4
|
| 49 | 43, 45, 48 | 3bitr3i 266 |
. . 3
|
| 50 | 42, 49 | sylib 188 |
. 2
|
| 51 | 18 | unisn 3908 |
. . . 4
|
| 52 | unieq 3901 |
. . . 4
| |
| 53 | inteq 3930 |
. . . . 5
| |
| 54 | 18 | intsn 3963 |
. . . . 5
|
| 55 | 53, 54 | syl6eq 2401 |
. . . 4
|
| 56 | 51, 52, 55 | 3eqtr4a 2411 |
. . 3
|
| 57 | 56 | exlimiv 1634 |
. 2
|
| 58 | 50, 57 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 |
| This theorem is referenced by: uniintab 3965 |
| Copyright terms: Public domain | W3C validator |