New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniintsn | Unicode version |
Description: Two ways to express " is a singleton." See also en1 in set.mm, en1b in set.mm, card1 in set.mm, and eusn 3797. (Contributed by NM, 2-Aug-2010.) |
Ref | Expression |
---|---|
uniintsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vn0 3558 | . . . . . 6 | |
2 | inteq 3930 | . . . . . . . . . . 11 | |
3 | int0 3941 | . . . . . . . . . . 11 | |
4 | 2, 3 | syl6eq 2401 | . . . . . . . . . 10 |
5 | 4 | adantl 452 | . . . . . . . . 9 |
6 | unieq 3901 | . . . . . . . . . . . 12 | |
7 | uni0 3919 | . . . . . . . . . . . 12 | |
8 | 6, 7 | syl6eq 2401 | . . . . . . . . . . 11 |
9 | eqeq1 2359 | . . . . . . . . . . 11 | |
10 | 8, 9 | syl5ib 210 | . . . . . . . . . 10 |
11 | 10 | imp 418 | . . . . . . . . 9 |
12 | 5, 11 | eqtr3d 2387 | . . . . . . . 8 |
13 | 12 | ex 423 | . . . . . . 7 |
14 | 13 | necon3d 2555 | . . . . . 6 |
15 | 1, 14 | mpi 16 | . . . . 5 |
16 | n0 3560 | . . . . 5 | |
17 | 15, 16 | sylib 188 | . . . 4 |
18 | vex 2863 | . . . . . . 7 | |
19 | vex 2863 | . . . . . . 7 | |
20 | 18, 19 | prss 3862 | . . . . . 6 |
21 | uniss 3913 | . . . . . . . . . . . . 13 | |
22 | 21 | adantl 452 | . . . . . . . . . . . 12 |
23 | simpl 443 | . . . . . . . . . . . 12 | |
24 | 22, 23 | sseqtrd 3308 | . . . . . . . . . . 11 |
25 | intss 3948 | . . . . . . . . . . . 12 | |
26 | 25 | adantl 452 | . . . . . . . . . . 11 |
27 | 24, 26 | sstrd 3283 | . . . . . . . . . 10 |
28 | 18, 19 | unipr 3906 | . . . . . . . . . 10 |
29 | 18, 19 | intpr 3960 | . . . . . . . . . 10 |
30 | 27, 28, 29 | 3sstr3g 3312 | . . . . . . . . 9 |
31 | inss1 3476 | . . . . . . . . . 10 | |
32 | ssun1 3427 | . . . . . . . . . 10 | |
33 | 31, 32 | sstri 3282 | . . . . . . . . 9 |
34 | 30, 33 | jctir 524 | . . . . . . . 8 |
35 | eqss 3288 | . . . . . . . . 9 | |
36 | uneqin 3507 | . . . . . . . . 9 | |
37 | 35, 36 | bitr3i 242 | . . . . . . . 8 |
38 | 34, 37 | sylib 188 | . . . . . . 7 |
39 | 38 | ex 423 | . . . . . 6 |
40 | 20, 39 | syl5bi 208 | . . . . 5 |
41 | 40 | alrimivv 1632 | . . . 4 |
42 | 17, 41 | jca 518 | . . 3 |
43 | euabsn 3793 | . . . 4 | |
44 | eleq1 2413 | . . . . 5 | |
45 | 44 | eu4 2243 | . . . 4 |
46 | abid2 2471 | . . . . . 6 | |
47 | 46 | eqeq1i 2360 | . . . . 5 |
48 | 47 | exbii 1582 | . . . 4 |
49 | 43, 45, 48 | 3bitr3i 266 | . . 3 |
50 | 42, 49 | sylib 188 | . 2 |
51 | 18 | unisn 3908 | . . . 4 |
52 | unieq 3901 | . . . 4 | |
53 | inteq 3930 | . . . . 5 | |
54 | 18 | intsn 3963 | . . . . 5 |
55 | 53, 54 | syl6eq 2401 | . . . 4 |
56 | 51, 52, 55 | 3eqtr4a 2411 | . . 3 |
57 | 56 | exlimiv 1634 | . 2 |
58 | 50, 57 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 weu 2204 cab 2339 wne 2517 cvv 2860 cun 3208 cin 3209 wss 3258 c0 3551 csn 3738 cpr 3739 cuni 3892 cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 |
This theorem is referenced by: uniintab 3965 |
Copyright terms: Public domain | W3C validator |