New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jctir | GIF version |
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (φ → ψ) |
jctil.2 | ⊢ χ |
Ref | Expression |
---|---|
jctir | ⊢ (φ → (ψ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.1 | . 2 ⊢ (φ → ψ) | |
2 | jctil.2 | . . 3 ⊢ χ | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → χ) |
4 | 1, 3 | jca 518 | 1 ⊢ (φ → (ψ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: jctr 526 equvini 1987 uniintsn 3964 ltfinp1 4463 vfinspeqtncv 4554 foimacnv 5304 respreima 5411 fpr 5438 spacssnc 6285 |
Copyright terms: Public domain | W3C validator |