NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctir GIF version

Theorem jctir 524
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (φψ)
jctil.2 χ
Assertion
Ref Expression
jctir (φ → (ψ χ))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (φψ)
2 jctil.2 . . 3 χ
32a1i 10 . 2 (φχ)
41, 3jca 518 1 (φ → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  jctr  526  equvini  1987  uniintsn  3964  ltfinp1  4463  vfinspeqtncv  4554  foimacnv  5304  respreima  5411  fpr  5438  spacssnc  6285
  Copyright terms: Public domain W3C validator