| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > n0f | Unicode version | ||
| Description: A nonempty class has at
least one element.  Proposition 5.17(1) of
       [TakeutiZaring] p. 20.  This
version of n0 3560 requires only that  | 
| Ref | Expression | 
|---|---|
| n0f.1 | 
 | 
| Ref | Expression | 
|---|---|
| n0f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0f.1 | 
. . . . 5
 | |
| 2 | nfcv 2490 | 
. . . . 5
 | |
| 3 | 1, 2 | cleqf 2514 | 
. . . 4
 | 
| 4 | noel 3555 | 
. . . . . 6
 | |
| 5 | 4 | nbn 336 | 
. . . . 5
 | 
| 6 | 5 | albii 1566 | 
. . . 4
 | 
| 7 | 3, 6 | bitr4i 243 | 
. . 3
 | 
| 8 | 7 | necon3abii 2547 | 
. 2
 | 
| 9 | df-ex 1542 | 
. 2
 | |
| 10 | 8, 9 | bitr4i 243 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: n0 3560 abn0 3569 | 
| Copyright terms: Public domain | W3C validator |