New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfoprab | Unicode version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 |
Ref | Expression |
---|---|
nfoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5528 | . 2 | |
2 | nfv 1619 | . . . . . . 7 | |
3 | nfoprab.1 | . . . . . . 7 | |
4 | 2, 3 | nfan 1824 | . . . . . 6 |
5 | 4 | nfex 1843 | . . . . 5 |
6 | 5 | nfex 1843 | . . . 4 |
7 | 6 | nfex 1843 | . . 3 |
8 | 7 | nfab 2493 | . 2 |
9 | 1, 8 | nfcxfr 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wnf 1544 wceq 1642 cab 2339 wnfc 2476 cop 4561 coprab 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-oprab 5528 |
This theorem is referenced by: nfmpt2 5675 |
Copyright terms: Public domain | W3C validator |