NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfoprab Unicode version

Theorem nfoprab 5550
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
Hypothesis
Ref Expression
nfoprab.1  F/
Assertion
Ref Expression
nfoprab  F/_
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,)

Proof of Theorem nfoprab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5529 . 2
2 nfv 1619 . . . . . . 7  F/
3 nfoprab.1 . . . . . . 7  F/
42, 3nfan 1824 . . . . . 6  F/
54nfex 1843 . . . . 5  F/
65nfex 1843 . . . 4  F/
76nfex 1843 . . 3  F/
87nfab 2494 . 2  F/_
91, 8nfcxfr 2487 1  F/_
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   F/wnf 1544   wceq 1642  cab 2339   F/_wnfc 2477  cop 4562  coprab 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-oprab 5529
This theorem is referenced by:  nfmpt2  5676
  Copyright terms: Public domain W3C validator