| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfoprab | GIF version | ||
| Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfoprab.1 | ⊢ Ⅎwφ |
| Ref | Expression |
|---|---|
| nfoprab | ⊢ Ⅎw{〈〈x, y〉, z〉 ∣ φ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} | |
| 2 | nfv 1619 | . . . . . . 7 ⊢ Ⅎw v = 〈〈x, y〉, z〉 | |
| 3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎwφ | |
| 4 | 2, 3 | nfan 1824 | . . . . . 6 ⊢ Ⅎw(v = 〈〈x, y〉, z〉 ∧ φ) |
| 5 | 4 | nfex 1843 | . . . . 5 ⊢ Ⅎw∃z(v = 〈〈x, y〉, z〉 ∧ φ) |
| 6 | 5 | nfex 1843 | . . . 4 ⊢ Ⅎw∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) |
| 7 | 6 | nfex 1843 | . . 3 ⊢ Ⅎw∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) |
| 8 | 7 | nfab 2494 | . 2 ⊢ Ⅎw{v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} |
| 9 | 1, 8 | nfcxfr 2487 | 1 ⊢ Ⅎw{〈〈x, y〉, z〉 ∣ φ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 Ⅎwnfc 2477 〈cop 4562 {coprab 5528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-oprab 5529 |
| This theorem is referenced by: nfmpt2 5676 |
| Copyright terms: Public domain | W3C validator |