![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > nfv | Unicode version |
Description: If ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | nfi 1551 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-nf 1545 |
This theorem is referenced by: nfvd 1620 19.21v 1890 19.23v 1891 pm11.53 1893 19.27v 1894 19.28v 1895 19.36v 1896 19.36aiv 1897 19.12vv 1898 19.37v 1899 19.41v 1901 19.42v 1905 eeanv 1913 nexdv 1916 spimv 1990 spimev 1999 cbvalv 2002 cbvexv 2003 cbval2 2004 cbvex2 2005 cbval2v 2006 cbvex2v 2007 cbvaldva 2010 cbvexdva 2011 cleljustALT 2015 dvelimnf 2017 sbiedv 2037 ax16i 2046 ax16ALT2 2048 equsb3lem 2101 equsb3 2102 elsb3 2103 elsb4 2104 sbhb 2107 sbnf2 2108 dfsb7 2119 sbid2v 2123 exsb 2130 exsbOLD 2131 euf 2210 eubidv 2212 nfeud2 2216 sb8eu 2222 mo 2226 euex 2227 euorv 2232 sbmo 2234 mo4f 2236 mo4 2237 mobidv 2239 eu5 2242 moim 2250 morimv 2252 moanim 2260 moanimv 2262 euanv 2265 mopick 2266 moexexv 2274 2mo 2282 2mos 2283 2eu4 2287 2eu6 2289 bm1.1 2338 eqsb3lem 2453 eqsb3 2454 clelsb3 2455 abbi 2463 abbidv 2467 cbvabv 2472 clelab 2473 nfcjust 2477 nfcv 2489 nfeqd 2503 nfeld 2504 nfabd2 2507 dvelimdc 2509 cleqf 2513 sbabel 2515 ralbidva 2630 rexbidva 2631 ralbidv 2634 rexbidv 2635 2ralbida 2653 2ralbidva 2654 ralimdva 2692 ralrimiv 2696 r19.21v 2701 ralrimdv 2703 reximdvai 2724 r19.23v 2730 rexlimiv 2732 rexlimdv 2737 r19.37av 2761 r19.41v 2764 reean 2777 reeanv 2778 reubidva 2794 rmobidva 2799 cbvralf 2829 cbvreu 2833 cbvralv 2835 cbvrexv 2836 cbvreuv 2837 cbvrmov 2838 cbvralsv 2846 cbvrexsv 2847 sbralie 2848 cbvrab 2857 cbvrabv 2858 issetf 2864 ceqsalv 2885 ceqsralv 2886 ceqsexv 2894 ceqsex2 2895 ceqsex2v 2896 vtocld 2907 vtocl 2909 vtoclg 2914 vtocl2g 2918 vtoclga 2920 vtocl2gaf 2921 vtocl2ga 2922 vtocl3gaf 2923 vtocl3ga 2924 spcimdv 2936 spcgv 2939 spcegv 2940 rspct 2948 rspc 2949 rspce 2950 rspcv 2951 rspcev 2955 rspc2v 2961 eqvincf 2967 ceqsexgv 2971 elabgt 2982 elab 2985 elabg 2986 elab3g 2991 elrab 2994 ralab2 3001 rexab2 3003 eqeu 3007 mo2icl 3015 mob2 3016 mob 3018 reu2 3024 reu3 3026 sbcco 3068 sbcco2 3069 cbvsbcv 3075 sbcieg 3078 sbcie2g 3079 sbcied 3082 elrabsf 3084 sbcbidv 3100 sbcel2gv 3106 sbcg 3111 sbc2iegf 3112 sbc2ie 3113 rmo2 3131 rmo3 3133 csbeq2dv 3161 nfcsb1d 3166 nfcsbd 3169 csbiebt 3172 csbied 3178 csbie2t 3180 sbcnestg 3185 sbnfc2 3196 cbvralcsf 3198 cbvreucsf 3200 cbvrabcsf 3201 cbvralv2 3202 cbvrexv2 3203 dfss2f 3264 uniiunlem 3353 sbss 3659 nfifd 3685 euabsn 3792 nfuni 3897 nfunid 3898 eluniab 3903 nfint 3936 elintab 3937 iineq2dv 3991 nfiotad 4342 cbviota 4344 cbviotav 4345 sb8iota 4346 iota2d 4366 iota2 4367 ncfinraise 4481 ncfinlower 4483 nfop 4604 copsex2t 4608 copsex2g 4609 opabbidv 4625 nfopab 4627 cbvopab 4630 cbvopabv 4631 cbvopab1 4632 cbvopab2 4633 cbvopab1s 4634 cbvopab1v 4635 opelopabaf 4710 opeliunxp 4820 opeliunxp2 4822 ralxpf 4827 dfdmf 4905 dfrnf 4962 dffun3 5120 dffun6f 5123 fun11 5159 imadif 5171 fun11iun 5305 fv3 5341 tz6.12-1 5344 tz6.12c 5347 funfv2f 5377 eqfnfv2f 5396 ffnfv 5427 ffnfvf 5428 dff13f 5472 nfoprab 5549 oprabbidv 5564 cbvoprab1 5567 cbvoprab2 5568 cbvoprab12 5569 cbvoprab12v 5570 cbvoprab3 5571 cbvoprab3v 5572 ov3 5599 mpteq12f 5655 mpt2eq123 5661 mpteq2dva 5667 cbvmpt 5676 cbvmpt2x 5678 fmpt2x 5730 fvfullfunlem1 5861 |
Copyright terms: Public domain | W3C validator |