Proof of Theorem nfsb4t
Step | Hyp | Ref
| Expression |
1 | | sbequ12 1919 |
. . . . . . . . 9
⊢ (x = y →
(φ ↔ [y / x]φ)) |
2 | 1 | sps 1754 |
. . . . . . . 8
⊢ (∀x x = y →
(φ ↔ [y / x]φ)) |
3 | 2 | drnf2 1970 |
. . . . . . 7
⊢ (∀x x = y →
(Ⅎzφ ↔ Ⅎz[y / x]φ)) |
4 | 3 | biimpcd 215 |
. . . . . 6
⊢ (Ⅎzφ →
(∀x
x = y
→ Ⅎz[y / x]φ)) |
5 | 4 | sps 1754 |
. . . . 5
⊢ (∀xℲzφ → (∀x x = y →
Ⅎz[y / x]φ)) |
6 | 5 | a1dd 42 |
. . . 4
⊢ (∀xℲzφ → (∀x x = y →
((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz[y / x]φ))) |
7 | | nfa1 1788 |
. . . . . . . 8
⊢ Ⅎx∀xℲzφ |
8 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎx ¬ ∀z z = x |
9 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎx ¬ ∀z z = y |
10 | 8, 9 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎx(¬ ∀z z = x ∧ ¬ ∀z z = y) |
11 | 7, 10 | nfan 1824 |
. . . . . . 7
⊢ Ⅎx(∀xℲzφ ∧ (¬
∀z
z = x
∧ ¬ ∀z z = y)) |
12 | | nfeqf 1958 |
. . . . . . . . 9
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
13 | 12 | adantl 452 |
. . . . . . . 8
⊢ ((∀xℲzφ ∧ (¬
∀z
z = x
∧ ¬ ∀z z = y)) →
Ⅎz x = y) |
14 | | sp 1747 |
. . . . . . . . 9
⊢ (∀xℲzφ → Ⅎzφ) |
15 | 14 | adantr 451 |
. . . . . . . 8
⊢ ((∀xℲzφ ∧ (¬
∀z
z = x
∧ ¬ ∀z z = y)) →
Ⅎzφ) |
16 | 13, 15 | nfimd 1808 |
. . . . . . 7
⊢ ((∀xℲzφ ∧ (¬
∀z
z = x
∧ ¬ ∀z z = y)) →
Ⅎz(x = y →
φ)) |
17 | 11, 16 | nfald 1852 |
. . . . . 6
⊢ ((∀xℲzφ ∧ (¬
∀z
z = x
∧ ¬ ∀z z = y)) →
Ⅎz∀x(x = y →
φ)) |
18 | 17 | ex 423 |
. . . . 5
⊢ (∀xℲzφ → ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz∀x(x = y →
φ))) |
19 | | nfnae 1956 |
. . . . . . 7
⊢ Ⅎz ¬ ∀x x = y |
20 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀x x = y →
([y / x]φ ↔
∀x(x = y → φ))) |
21 | 19, 20 | nfbidf 1774 |
. . . . . 6
⊢ (¬ ∀x x = y →
(Ⅎz[y / x]φ ↔ Ⅎz∀x(x = y → φ))) |
22 | 21 | imbi2d 307 |
. . . . 5
⊢ (¬ ∀x x = y →
(((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz[y / x]φ) ↔ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz∀x(x = y →
φ)))) |
23 | 18, 22 | syl5ibrcom 213 |
. . . 4
⊢ (∀xℲzφ → (¬ ∀x x = y →
((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz[y / x]φ))) |
24 | 6, 23 | pm2.61d 150 |
. . 3
⊢ (∀xℲzφ → ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz[y / x]φ)) |
25 | 24 | exp3a 425 |
. 2
⊢ (∀xℲzφ → (¬ ∀z z = x →
(¬ ∀z z = y → Ⅎz[y / x]φ))) |
26 | | nfsb2 2058 |
. . 3
⊢ (¬ ∀z z = y →
Ⅎz[y / z]φ) |
27 | | drsb1 2022 |
. . . 4
⊢ (∀z z = x →
([y / z]φ ↔
[y / x]φ)) |
28 | 27 | drnf2 1970 |
. . 3
⊢ (∀z z = x →
(Ⅎz[y / z]φ ↔ Ⅎz[y / x]φ)) |
29 | 26, 28 | syl5ib 210 |
. 2
⊢ (∀z z = x →
(¬ ∀z z = y → Ⅎz[y / x]φ)) |
30 | 25, 29 | pm2.61d2 152 |
1
⊢ (∀xℲzφ → (¬ ∀z z = y →
Ⅎz[y / x]φ)) |