| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > drsb1 | Unicode version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| drsb1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equequ1 1684 | 
. . . . 5
 | |
| 2 | 1 | sps 1754 | 
. . . 4
 | 
| 3 | 2 | imbi1d 308 | 
. . 3
 | 
| 4 | 2 | anbi1d 685 | 
. . . 4
 | 
| 5 | 4 | drex1 1967 | 
. . 3
 | 
| 6 | 3, 5 | anbi12d 691 | 
. 2
 | 
| 7 | df-sb 1649 | 
. 2
 | |
| 8 | df-sb 1649 | 
. 2
 | |
| 9 | 6, 7, 8 | 3bitr4g 279 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 | 
| This theorem is referenced by: sbequi 2059 nfsb4t 2080 sbco3 2088 sbcom 2089 sb9i 2094 iotaeq 4348 | 
| Copyright terms: Public domain | W3C validator |