NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelins2kg Unicode version

Theorem opkelins2kg 4251
Description: Kuratowski ordered pair membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
opkelins2kg Ins2k
Distinct variable groups:   ,,,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem opkelins2kg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ins2k 4187 . 2 Ins2k
2 eqeq1 2359 . . . 4
323anbi1d 1256 . . 3
433exbidv 1629 . 2
5 eqeq1 2359 . . . 4
653anbi2d 1257 . . 3
763exbidv 1629 . 2
81, 4, 7opkelopkabg 4245 1 Ins2k
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  csn 3737  copk 4057   Ins2k cins2k 4176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-sn 3741  df-pr 3742  df-opk 4058  df-ins2k 4187
This theorem is referenced by:  otkelins2kg  4253  opkelcokg  4261  ins2kss  4279  cokrelk  4284
  Copyright terms: Public domain W3C validator