| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > opkelopkabg | Unicode version | ||
| Description: Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| opkelopkabg.1 | 
 | 
| opkelopkabg.2 | 
 | 
| opkelopkabg.3 | 
 | 
| Ref | Expression | 
|---|---|
| opkelopkabg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opkex 4114 | 
. . 3
 | |
| 2 | eqeq1 2359 | 
. . . . . 6
 | |
| 3 | eqcom 2355 | 
. . . . . 6
 | |
| 4 | 2, 3 | syl6bb 252 | 
. . . . 5
 | 
| 5 | 4 | anbi1d 685 | 
. . . 4
 | 
| 6 | 5 | 2exbidv 1628 | 
. . 3
 | 
| 7 | opkelopkabg.1 | 
. . 3
 | |
| 8 | 1, 6, 7 | elab2 2989 | 
. 2
 | 
| 9 | elex 2868 | 
. . 3
 | |
| 10 | elex 2868 | 
. . 3
 | |
| 11 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 12 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 13 | opkthg 4132 | 
. . . . . . . . . . 11
 | |
| 14 | 11, 12, 13 | mp3an12 1267 | 
. . . . . . . . . 10
 | 
| 15 | 14 | adantl 452 | 
. . . . . . . . 9
 | 
| 16 | 15 | anbi1d 685 | 
. . . . . . . 8
 | 
| 17 | anass 630 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | syl6bb 252 | 
. . . . . . 7
 | 
| 19 | 18 | exbidv 1626 | 
. . . . . 6
 | 
| 20 | 19.42v 1905 | 
. . . . . 6
 | |
| 21 | 19, 20 | syl6bb 252 | 
. . . . 5
 | 
| 22 | 21 | exbidv 1626 | 
. . . 4
 | 
| 23 | opkelopkabg.2 | 
. . . . . . . 8
 | |
| 24 | 23 | anbi2d 684 | 
. . . . . . 7
 | 
| 25 | 24 | exbidv 1626 | 
. . . . . 6
 | 
| 26 | 25 | ceqsexgv 2972 | 
. . . . 5
 | 
| 27 | 26 | adantr 451 | 
. . . 4
 | 
| 28 | opkelopkabg.3 | 
. . . . . 6
 | |
| 29 | 28 | ceqsexgv 2972 | 
. . . . 5
 | 
| 30 | 29 | adantl 452 | 
. . . 4
 | 
| 31 | 22, 27, 30 | 3bitrd 270 | 
. . 3
 | 
| 32 | 9, 10, 31 | syl2an 463 | 
. 2
 | 
| 33 | 8, 32 | syl5bb 248 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 | 
| This theorem is referenced by: opkelopkab 4247 opkelxpkg 4248 opkelcnvkg 4250 opkelins2kg 4252 opkelins3kg 4253 opkelsikg 4265 opkelssetkg 4269 opkelidkg 4275 opklefing 4449 opkltfing 4450 | 
| Copyright terms: Public domain | W3C validator |