New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkelopkabg | Unicode version |
Description: Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
opkelopkabg.1 | |
opkelopkabg.2 | |
opkelopkabg.3 |
Ref | Expression |
---|---|
opkelopkabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opkex 4114 | . . 3 | |
2 | eqeq1 2359 | . . . . . 6 | |
3 | eqcom 2355 | . . . . . 6 | |
4 | 2, 3 | syl6bb 252 | . . . . 5 |
5 | 4 | anbi1d 685 | . . . 4 |
6 | 5 | 2exbidv 1628 | . . 3 |
7 | opkelopkabg.1 | . . 3 | |
8 | 1, 6, 7 | elab2 2989 | . 2 |
9 | elex 2868 | . . 3 | |
10 | elex 2868 | . . 3 | |
11 | vex 2863 | . . . . . . . . . . 11 | |
12 | vex 2863 | . . . . . . . . . . 11 | |
13 | opkthg 4132 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | mp3an12 1267 | . . . . . . . . . 10 |
15 | 14 | adantl 452 | . . . . . . . . 9 |
16 | 15 | anbi1d 685 | . . . . . . . 8 |
17 | anass 630 | . . . . . . . 8 | |
18 | 16, 17 | syl6bb 252 | . . . . . . 7 |
19 | 18 | exbidv 1626 | . . . . . 6 |
20 | 19.42v 1905 | . . . . . 6 | |
21 | 19, 20 | syl6bb 252 | . . . . 5 |
22 | 21 | exbidv 1626 | . . . 4 |
23 | opkelopkabg.2 | . . . . . . . 8 | |
24 | 23 | anbi2d 684 | . . . . . . 7 |
25 | 24 | exbidv 1626 | . . . . . 6 |
26 | 25 | ceqsexgv 2972 | . . . . 5 |
27 | 26 | adantr 451 | . . . 4 |
28 | opkelopkabg.3 | . . . . . 6 | |
29 | 28 | ceqsexgv 2972 | . . . . 5 |
30 | 29 | adantl 452 | . . . 4 |
31 | 22, 27, 30 | 3bitrd 270 | . . 3 |
32 | 9, 10, 31 | syl2an 463 | . 2 |
33 | 8, 32 | syl5bb 248 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cab 2339 cvv 2860 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkelopkab 4247 opkelxpkg 4248 opkelcnvkg 4250 opkelins2kg 4252 opkelins3kg 4253 opkelsikg 4265 opkelssetkg 4269 opkelidkg 4275 opklefing 4449 opkltfing 4450 |
Copyright terms: Public domain | W3C validator |