Theorem List for New Foundations Explorer - 4201-4300   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | xpkeq12 4201 | 
Equality theorem for Kuratowski cross product.  (Contributed by SF,
     12-Jan-2015.)
 | 
                         k     
     k     | 
|   | 
| Theorem | xpkeq1i 4202 | 
Equality inference for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
               k          k    | 
|   | 
| Theorem | xpkeq2i 4203 | 
Equality inference for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
               k          k    | 
|   | 
| Theorem | xpkeq12i 4204 | 
Equality inference for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
                             k          k    | 
|   | 
| Theorem | xpkeq1d 4205 | 
Equality deduction for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
                               k   
       k     | 
|   | 
| Theorem | xpkeq2d 4206 | 
Equality deduction for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
                               k   
       k     | 
|   | 
| Theorem | xpkeq12d 4207 | 
Equality deduction for Kuratowski cross product.  (Contributed by SF,
       12-Jan-2015.)
 | 
                                                   k   
       k     | 
|   | 
| Theorem | elvvk 4208* | 
Membership in     k   .  (Contributed by SF, 13-Jan-2015.)
 | 
           k   
  
     
             | 
|   | 
| Theorem | opkabssvvk 4209* | 
Any Kuratowski ordered pair abstraction is a subset of
           k   .  (Contributed by SF, 13-Jan-2015.)
 | 
    
                               k    | 
|   | 
| Theorem | opkabssvvki 4210* | 
Any Kuratowski ordered pair abstraction is a subset of
           k   .  (Contributed by SF, 13-Jan-2015.)
 | 
     
            
                                k    | 
|   | 
| Theorem | xpkssvvk 4211 | 
Any Kuratowski cross product is a subset of     k   .
       (Contributed by SF, 13-Jan-2015.)
 | 
      k          k    | 
|   | 
| Theorem | ssrelk 4212* | 
Subset for Kuratowski relationships.  (Contributed by SF,
       13-Jan-2015.)
 | 
           k   
                                            | 
|   | 
| Theorem | eqrelk 4213* | 
Equality for two Kuratowski relationships.  (Contributed by SF,
       13-Jan-2015.)
 | 
            k   
           k           
                                     | 
|   | 
| Theorem | eqrelkriiv 4214* | 
Equality for two Kuratowski relationships.  (Contributed by SF,
         13-Jan-2015.)
 | 
          k                    k                                                 
   | 
|   | 
| Theorem | eqrelkrdv 4215* | 
Equality for two Kuratowski relationships.  (Contributed by SF,
         13-Jan-2015.)
 | 
          k                    k                                                                | 
|   | 
| Theorem | cnvkeq 4216 | 
Equality theorem for Kuratowski converse.  (Contributed by SF,
       12-Jan-2015.)
 | 
            k     k   | 
|   | 
| Theorem | cnvkeqi 4217 | 
Equality inference for Kuratowski converse.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
            k   
  k  | 
|   | 
| Theorem | cnvkeqd 4218 | 
Equality deduction for Kuratowski converse.  (Contributed by SF,
       12-Jan-2015.)
 | 
                            k     k   | 
|   | 
| Theorem | ins2keq 4219 | 
Equality theorem for the Kuratowski insert two operator.  (Contributed
       by SF, 12-Jan-2015.)
 | 
           Ins2k
     Ins2k    | 
|   | 
| Theorem | ins3keq 4220 | 
Equality theorem for the Kuratowski insert three operator.  (Contributed
       by SF, 12-Jan-2015.)
 | 
           Ins3k
     Ins3k    | 
|   | 
| Theorem | ins2keqi 4221 | 
Equality inference for Kuratowski insert two operator.  (Contributed by
       SF, 12-Jan-2015.)
 | 
     
           Ins2k     Ins2k   | 
|   | 
| Theorem | ins3keqi 4222 | 
Equality inference for Kuratowski insert three operator.  (Contributed
       by SF, 12-Jan-2015.)
 | 
     
           Ins3k     Ins3k   | 
|   | 
| Theorem | ins2keqd 4223 | 
Equality deduction for Kuratowski insert two operator.  (Contributed by
       SF, 12-Jan-2015.)
 | 
                           Ins2k     Ins2k    | 
|   | 
| Theorem | ins3keqd 4224 | 
Equality deduction for Kuratowski insert three operator.  (Contributed
       by SF, 12-Jan-2015.)
 | 
                           Ins3k     Ins3k    | 
|   | 
| Theorem | imakeq1 4225 | 
Equality theorem for Kuratowski image.  (Contributed by SF,
       12-Jan-2015.)
 | 
              k        k    | 
|   | 
| Theorem | imakeq2 4226 | 
Equality theorem for Kuratowski image.  (Contributed by SF,
       12-Jan-2015.)
 | 
              k        k    | 
|   | 
| Theorem | imakeq1i 4227 | 
Equality theorem for image.  (Contributed by SF, 12-Jan-2015.)
 | 
     
              k        k   | 
|   | 
| Theorem | imakeq2i 4228 | 
Equality theorem for Kuratowski image.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
              k        k   | 
|   | 
| Theorem | imakeq1d 4229 | 
Equality theorem for Kuratowski image.  (Contributed by SF,
       12-Jan-2015.)
 | 
                              k        k    | 
|   | 
| Theorem | imakeq2d 4230 | 
Equality theorem for Kuratowski image.  (Contributed by SF,
       12-Jan-2015.)
 | 
                              k        k    | 
|   | 
| Theorem | cokeq1 4231 | 
Equality theorem for Kuratowski composition of two classes.  (Contributed
     by SF, 12-Jan-2015.)
 | 
               k          k     | 
|   | 
| Theorem | cokeq2 4232 | 
Equality theorem for Kuratowski composition of two classes.  (Contributed
     by SF, 12-Jan-2015.)
 | 
               k          k     | 
|   | 
| Theorem | cokeq1i 4233 | 
Equality inference for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
     
               k          k    | 
|   | 
| Theorem | cokeq2i 4234 | 
Equality inference for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
     
               k          k    | 
|   | 
| Theorem | cokeq1d 4235 | 
Equality deduction for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
                               k          k     | 
|   | 
| Theorem | cokeq2d 4236 | 
Equality deduction for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
                               k          k     | 
|   | 
| Theorem | cokeq12i 4237 | 
Equality inference for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
     
                             k          k    | 
|   | 
| Theorem | cokeq12d 4238 | 
Equality deduction for Kuratowski composition of two classes.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                                   k          k     | 
|   | 
| Theorem | p6eq 4239 | 
Equality theorem for P6 operation.  (Contributed by SF, 12-Jan-2015.)
 | 
           P6     P6    | 
|   | 
| Theorem | p6eqi 4240 | 
Equality inference for the P6 operation.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
           P6     P6   | 
|   | 
| Theorem | p6eqd 4241 | 
Equality deduction for the P6 operation.  (Contributed by SF,
       12-Jan-2015.)
 | 
                           P6     P6    | 
|   | 
| Theorem | sikeq 4242 | 
Equality theorem for Kuratowski singleton image.  (Contributed by SF,
       12-Jan-2015.)
 | 
           SIk
     SIk    | 
|   | 
| Theorem | sikeqi 4243 | 
Equality inference for Kuratowski singleton image.  (Contributed by SF,
       12-Jan-2015.)
 | 
     
           SIk     SIk   | 
|   | 
| Theorem | sikeqd 4244 | 
Equality deduction for Kuratowski singleton image.  (Contributed by SF,
       12-Jan-2015.)
 | 
                           SIk     SIk    | 
|   | 
| Theorem | imagekeq 4245 | 
Equality theorem for image operation.  (Contributed by SF,
     12-Jan-2015.)
 | 
           Imagek    Imagek   | 
|   | 
| Theorem | opkelopkabg 4246* | 
Kuratowski ordered pair membership in an abstraction of Kuratowski
       ordered pairs.  (Contributed by SF, 12-Jan-2015.)
 | 
     
            
                                                                                                                 | 
|   | 
| Theorem | opkelopkab 4247* | 
Kuratowski ordered pair membership in an abstraction of Kuratowski
       ordered pairs.  (Contributed by SF, 12-Jan-2015.)
 | 
     
            
                                                                                                                         | 
|   | 
| Theorem | opkelxpkg 4248 | 
Kuratowski ordered pair membership in a Kuratowski cross product.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                   k   
  
                   | 
|   | 
| Theorem | opkelxpk 4249 | 
Kuratowski ordered pair membership in a Kuratowski cross product.
       (Contributed by SF, 13-Jan-2015.)
 | 
                                            k        
               | 
|   | 
| Theorem | opkelcnvkg 4250 | 
Kuratowski ordered pair membership in a Kuratowski converse.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                k                 | 
|   | 
| Theorem | opkelcnvk 4251 | 
Kuratowski ordered pair membership in a Kuratowski converse.
       (Contributed by SF, 14-Jan-2015.)
 | 
                                         k                | 
|   | 
| Theorem | opkelins2kg 4252* | 
Kuratowski ordered pair membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                               Ins2k                           
                        | 
|   | 
| Theorem | opkelins3kg 4253* | 
Kuratowski ordered pair membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                               Ins3k                           
                        | 
|   | 
| Theorem | otkelins2kg 4254 | 
Kuratowski ordered triple membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                             
   Ins2k                  | 
|   | 
| Theorem | otkelins3kg 4255 | 
Kuratowski ordered triple membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                             
   Ins3k                  | 
|   | 
| Theorem | otkelins2k 4256 | 
Kuratowski ordered triple membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                                            
   Ins2k                 | 
|   | 
| Theorem | otkelins3k 4257 | 
Kuratowski ordered triple membership in Kuratowski insertion operator.
       (Contributed by SF, 12-Jan-2015.)
 | 
                                                            
   Ins3k                 | 
|   | 
| Theorem | elimakg 4258* | 
Membership in a Kuratowski image.  (Contributed by SF, 13-Jan-2015.)
 | 
                   k                         | 
|   | 
| Theorem | elimakvg 4259* | 
Membership in a Kuratowski image under  .  (Contributed by SF,
       13-Jan-2015.)
 | 
                   k                    | 
|   | 
| Theorem | elimak 4260* | 
Membership in a Kuratowski image.  (Contributed by SF, 13-Jan-2015.)
 | 
                        k                        | 
|   | 
| Theorem | elimakv 4261* | 
Membership in a Kuratowski image under  .  (Contributed by SF,
       13-Jan-2015.)
 | 
                        k                   | 
|   | 
| Theorem | opkelcokg 4262* | 
Membership in a Kuratowski composition.  (Contributed by SF,
       13-Jan-2015.)
 | 
                                   k   
  
                               | 
|   | 
| Theorem | opkelcok 4263* | 
Membership in a Kuratowski composition.  (Contributed by SF,
       13-Jan-2015.)
 | 
                                            k                                   | 
|   | 
| Theorem | elp6 4264* | 
Membership in the P6 operator.  (Contributed by SF, 13-Jan-2015.)
 | 
                P6                      | 
|   | 
| Theorem | opkelsikg 4265* | 
Membership in Kuratowski singleton image.  (Contributed by SF,
       13-Jan-2015.)
 | 
                               SIk                                            | 
|   | 
| Theorem | opksnelsik 4266 | 
Membership of an ordered pair of singletons in a Kuratowski singleton
       image.  (Contributed by SF, 13-Jan-2015.)
 | 
                                            SIk                 | 
|   | 
| Theorem | sikssvvk 4267 | 
A Kuratowski singleton image is a Kuratowski relationship.  (Contributed
       by SF, 13-Jan-2015.)
 | 
  SIk         k    | 
|   | 
| Theorem | sikss1c1c 4268 | 
A Kuratowski singleton image is a subset of  1c  k 1c .
       (Contributed by SF, 13-Jan-2015.)
 | 
  SIk      1c  k 1c  | 
|   | 
| Theorem | opkelssetkg 4269 | 
Membership in the Kuratowski subset relationship.  (Contributed by SF,
       13-Jan-2015.)
 | 
                               Sk           | 
|   | 
| Theorem | elssetkg 4270 | 
Membership via the Kuratowski subset relationship.  (Contributed by SF,
     13-Jan-2015.)
 | 
                                 Sk           | 
|   | 
| Theorem | elssetk 4271 | 
Membership via the Kuratowski subset relationship.  (Contributed by SF,
       13-Jan-2015.)
 | 
                                       
   Sk          | 
|   | 
| Theorem | opkelimagekg 4272 | 
Membership in the Kuratowski image functor.  (Contributed by SF,
       13-Jan-2015.)
 | 
                              
 Imagek           k     | 
|   | 
| Theorem | opkelimagek 4273 | 
Membership in the Kuratowski image functor.  (Contributed by SF,
       20-Jan-2015.)
 | 
                                        Imagek       
    k    | 
|   | 
| Theorem | imagekrelk 4274 | 
The Kuratowski image functor is a relationship.  (Contributed by SF,
     14-Jan-2015.)
 | 
  Imagek        k    | 
|   | 
| Theorem | opkelidkg 4275 | 
Membership in the Kuratowski identity relationship.  (Contributed by SF,
       13-Jan-2015.)
 | 
                                k
  
         | 
|   | 
| Theorem | cnvkssvvk 4276 | 
A Kuratowski converse is a Kuratowski relationship.  (Contributed by SF,
       13-Jan-2015.)
 | 
   k        k    | 
|   | 
| Theorem | cnvkxpk 4277 | 
The converse of a Kuratowski cross product.  (Contributed by SF,
       13-Jan-2015.)
 | 
   k  
  k
          k    | 
|   | 
| Theorem | inxpk 4278 | 
The intersection of two Kuratowski cross products.  (Contributed by SF,
       13-Jan-2015.)
 | 
       k          k    
      
       k   
       | 
|   | 
| Theorem | ssetkssvvk 4279 | 
The Kuratowski subset relationship is a Kuratowski relationship.
       (Contributed by SF, 13-Jan-2015.)
 | 
  Sk       k    | 
|   | 
| Theorem | ins2kss 4280 | 
Subset law for Ins2k  .  (Contributed by SF,
14-Jan-2015.)
 | 
  Ins2k       1 1c  k     k     | 
|   | 
| Theorem | ins3kss 4281 | 
Subset law for Ins3k  .  (Contributed by SF,
14-Jan-2015.)
 | 
  Ins3k       1 1c  k     k     | 
|   | 
| Theorem | idkssvvk 4282 | 
The Kuratowski identity relationship is a Kuratowski relationship.
       (Contributed by SF, 14-Jan-2015.)
 | 
   k       k    | 
|   | 
| Theorem | imacok 4283 | 
Image under a composition.  (Contributed by SF, 4-Feb-2015.)
 | 
       k    k        k   k    | 
|   | 
| Theorem | elimaksn 4284 | 
Membership in a Kuratowski image of a singleton.  (Contributed by SF,
       4-Feb-2015.)
 | 
                                      k                   | 
|   | 
| Theorem | cokrelk 4285 | 
A Kuratowski composition is a Kuratowski relationship.  (Contributed by
       SF, 4-Feb-2015.)
 | 
      k          k    | 
|   | 
| 2.2.8  Kuratowski existence theorems
 | 
|   | 
| Theorem | xpkvexg 4286 | 
The Kuratowski cross product of   with a set is a set.
       (Contributed by SF, 13-Jan-2015.)
 | 
               k         | 
|   | 
| Theorem | cnvkexg 4287 | 
The Kuratowski converse of a set is a set.  (Contributed by SF,
       13-Jan-2015.)
 | 
            k       | 
|   | 
| Theorem | cnvkex 4288 | 
The Kuratowski converse of a set is a set.  (Contributed by SF,
       14-Jan-2015.)
 | 
                 k      | 
|   | 
| Theorem | xpkexg 4289 | 
The Kuratowski cross product of two sets is a set.  (Contributed by SF,
     13-Jan-2015.)
 | 
                         k         | 
|   | 
| Theorem | xpkex 4290 | 
The Kuratowski cross product of two sets is a set.  (Contributed by SF,
       14-Jan-2015.)
 | 
                                  k        | 
|   | 
| Theorem | p6exg 4291 | 
The P6 operator applied to a set yields a set.  (Contributed by SF,
       13-Jan-2015.)
 | 
           P6        | 
|   | 
| Theorem | dfuni12 4292 | 
Alternate definition of unit union.  (Contributed by SF,
       15-Mar-2015.)
 | 
  ⋃1    P6     k    | 
|   | 
| Theorem | uni1exg 4293 | 
The unit union operator preserves sethood.  (Contributed by SF,
     13-Jan-2015.)
 | 
           ⋃1       | 
|   | 
| Theorem | uni1ex 4294 | 
The unit union operator preserves sethood.  (Contributed by SF,
       14-Jan-2015.)
 | 
                ⋃1      | 
|   | 
| Theorem | ssetkex 4295 | 
The Kuratowski subset relationship is a set.  (Contributed by SF,
       13-Jan-2015.)
 | 
  Sk     | 
|   | 
| Theorem | sikexlem 4296* | 
Lemma for sikexg 4297.  Equality for two subsets of
1c squared .
       (Contributed by SF, 14-Jan-2015.)
 | 
       1c  k 1c               1c  k 1c              
                                            | 
|   | 
| Theorem | sikexg 4297 | 
The Kuratowski singleton image of a set is a set.  (Contributed by SF,
       14-Jan-2015.)
 | 
           SIk
        | 
|   | 
| Theorem | sikex 4298 | 
The Kuratowski singleton image of a set is a set.  (Contributed by SF,
       14-Jan-2015.)
 | 
                SIk       | 
|   | 
| Theorem | dfimak2 4299 | 
Alternate definition of Kuratowski image.  This is the first of a series
       of definitions throughout the file designed to prove existence of
       various operations.  (Contributed by SF, 14-Jan-2015.)
 | 
     k     ∼ P6   ∼  1c  k   
   SIk ∼          k      | 
|   | 
| Theorem | imakexg 4300 | 
The image of a set under a set is a set.  (Contributed by SF,
     14-Jan-2015.)
 | 
                        k        |