HomeHome New Foundations Explorer
Theorem List (p. 43 of 64)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxpkeq12 4201 Equality theorem for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremxpkeq1i 4202 Equality inference for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremxpkeq2i 4203 Equality inference for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremxpkeq12i 4204 Equality inference for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   &       =>    k k
 
Theoremxpkeq1d 4205 Equality deduction for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremxpkeq2d 4206 Equality deduction for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremxpkeq12d 4207 Equality deduction for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
   &       =>    k k
 
Theoremelvvk 4208* Membership in k . (Contributed by SF, 13-Jan-2015.)
k
 
Theoremopkabssvvk 4209* Any Kuratowski ordered pair abstraction is a subset of k . (Contributed by SF, 13-Jan-2015.)
k
 
Theoremopkabssvvki 4210* Any Kuratowski ordered pair abstraction is a subset of k . (Contributed by SF, 13-Jan-2015.)
   =>    k
 
Theoremxpkssvvk 4211 Any Kuratowski cross product is a subset of k . (Contributed by SF, 13-Jan-2015.)
k k
 
Theoremssrelk 4212* Subset for Kuratowski relationships. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremeqrelk 4213* Equality for two Kuratowski relationships. (Contributed by SF, 13-Jan-2015.)
k k
 
Theoremeqrelkriiv 4214* Equality for two Kuratowski relationships. (Contributed by SF, 13-Jan-2015.)
k    &    k    &       =>   
 
Theoremeqrelkrdv 4215* Equality for two Kuratowski relationships. (Contributed by SF, 13-Jan-2015.)
k    &    k    &       =>   
 
Theoremcnvkeq 4216 Equality theorem for Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremcnvkeqi 4217 Equality inference for Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcnvkeqd 4218 Equality deduction for Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremins2keq 4219 Equality theorem for the Kuratowski insert two operator. (Contributed by SF, 12-Jan-2015.)
Ins2k Ins2k
 
Theoremins3keq 4220 Equality theorem for the Kuratowski insert three operator. (Contributed by SF, 12-Jan-2015.)
Ins3k Ins3k
 
Theoremins2keqi 4221 Equality inference for Kuratowski insert two operator. (Contributed by SF, 12-Jan-2015.)
   =>    Ins2k Ins2k
 
Theoremins3keqi 4222 Equality inference for Kuratowski insert three operator. (Contributed by SF, 12-Jan-2015.)
   =>    Ins3k Ins3k
 
Theoremins2keqd 4223 Equality deduction for Kuratowski insert two operator. (Contributed by SF, 12-Jan-2015.)
   =>    Ins2k Ins2k
 
Theoremins3keqd 4224 Equality deduction for Kuratowski insert three operator. (Contributed by SF, 12-Jan-2015.)
   =>    Ins3k Ins3k
 
Theoremimakeq1 4225 Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremimakeq2 4226 Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremimakeq1i 4227 Equality theorem for image. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremimakeq2i 4228 Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremimakeq1d 4229 Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremimakeq2d 4230 Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcokeq1 4231 Equality theorem for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremcokeq2 4232 Equality theorem for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
k k
 
Theoremcokeq1i 4233 Equality inference for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcokeq2i 4234 Equality inference for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcokeq1d 4235 Equality deduction for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcokeq2d 4236 Equality deduction for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   =>    k k
 
Theoremcokeq12i 4237 Equality inference for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   &       =>    k k
 
Theoremcokeq12d 4238 Equality deduction for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
   &       =>    k k
 
Theoremp6eq 4239 Equality theorem for P6 operation. (Contributed by SF, 12-Jan-2015.)
P6 P6
 
Theoremp6eqi 4240 Equality inference for the P6 operation. (Contributed by SF, 12-Jan-2015.)
   =>    P6 P6
 
Theoremp6eqd 4241 Equality deduction for the P6 operation. (Contributed by SF, 12-Jan-2015.)
   =>    P6 P6
 
Theoremsikeq 4242 Equality theorem for Kuratowski singleton image. (Contributed by SF, 12-Jan-2015.)
SIk SIk
 
Theoremsikeqi 4243 Equality inference for Kuratowski singleton image. (Contributed by SF, 12-Jan-2015.)
   =>    SIk SIk
 
Theoremsikeqd 4244 Equality deduction for Kuratowski singleton image. (Contributed by SF, 12-Jan-2015.)
   =>    SIk SIk
 
Theoremimagekeq 4245 Equality theorem for image operation. (Contributed by SF, 12-Jan-2015.)
Imagek Imagek
 
Theoremopkelopkabg 4246* Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.)
   &       &       =>   
 
Theoremopkelopkab 4247* Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.)
   &       &       &       &       =>   
 
Theoremopkelxpkg 4248 Kuratowski ordered pair membership in a Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
k
 
Theoremopkelxpk 4249 Kuratowski ordered pair membership in a Kuratowski cross product. (Contributed by SF, 13-Jan-2015.)
   &       =>    k
 
Theoremopkelcnvkg 4250 Kuratowski ordered pair membership in a Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
k
 
Theoremopkelcnvk 4251 Kuratowski ordered pair membership in a Kuratowski converse. (Contributed by SF, 14-Jan-2015.)
   &       =>    k
 
Theoremopkelins2kg 4252* Kuratowski ordered pair membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Ins2k
 
Theoremopkelins3kg 4253* Kuratowski ordered pair membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Ins3k
 
Theoremotkelins2kg 4254 Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Ins2k
 
Theoremotkelins3kg 4255 Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Ins3k
 
Theoremotkelins2k 4256 Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
   &       &       =>    Ins2k
 
Theoremotkelins3k 4257 Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
   &       &       =>    Ins3k
 
Theoremelimakg 4258* Membership in a Kuratowski image. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremelimakvg 4259* Membership in a Kuratowski image under . (Contributed by SF, 13-Jan-2015.)
k
 
Theoremelimak 4260* Membership in a Kuratowski image. (Contributed by SF, 13-Jan-2015.)
   =>    k
 
Theoremelimakv 4261* Membership in a Kuratowski image under . (Contributed by SF, 13-Jan-2015.)
   =>    k
 
Theoremopkelcokg 4262* Membership in a Kuratowski composition. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremopkelcok 4263* Membership in a Kuratowski composition. (Contributed by SF, 13-Jan-2015.)
   &       =>    k
 
Theoremelp6 4264* Membership in the P6 operator. (Contributed by SF, 13-Jan-2015.)
P6
 
Theoremopkelsikg 4265* Membership in Kuratowski singleton image. (Contributed by SF, 13-Jan-2015.)
SIk
 
Theoremopksnelsik 4266 Membership of an ordered pair of singletons in a Kuratowski singleton image. (Contributed by SF, 13-Jan-2015.)
   &       =>    SIk
 
Theoremsikssvvk 4267 A Kuratowski singleton image is a Kuratowski relationship. (Contributed by SF, 13-Jan-2015.)
SIk k
 
Theoremsikss1c1c 4268 A Kuratowski singleton image is a subset of 1c k 1c. (Contributed by SF, 13-Jan-2015.)
SIk 1c k 1c
 
Theoremopkelssetkg 4269 Membership in the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.)
Sk
 
Theoremelssetkg 4270 Membership via the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.)
Sk
 
Theoremelssetk 4271 Membership via the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.)
   &       =>    Sk
 
Theoremopkelimagekg 4272 Membership in the Kuratowski image functor. (Contributed by SF, 13-Jan-2015.)
Imagek k
 
Theoremopkelimagek 4273 Membership in the Kuratowski image functor. (Contributed by SF, 20-Jan-2015.)
   &       =>    Imagek k
 
Theoremimagekrelk 4274 The Kuratowski image functor is a relationship. (Contributed by SF, 14-Jan-2015.)
Imagek k
 
Theoremopkelidkg 4275 Membership in the Kuratowski identity relationship. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremcnvkssvvk 4276 A Kuratowski converse is a Kuratowski relationship. (Contributed by SF, 13-Jan-2015.)
k k
 
Theoremcnvkxpk 4277 The converse of a Kuratowski cross product. (Contributed by SF, 13-Jan-2015.)
k k k
 
Theoreminxpk 4278 The intersection of two Kuratowski cross products. (Contributed by SF, 13-Jan-2015.)
k k k
 
Theoremssetkssvvk 4279 The Kuratowski subset relationship is a Kuratowski relationship. (Contributed by SF, 13-Jan-2015.)
Sk k
 
Theoremins2kss 4280 Subset law for Ins2k . (Contributed by SF, 14-Jan-2015.)
Ins2k 1 1c k k
 
Theoremins3kss 4281 Subset law for Ins3k . (Contributed by SF, 14-Jan-2015.)
Ins3k 1 1c k k
 
Theoremidkssvvk 4282 The Kuratowski identity relationship is a Kuratowski relationship. (Contributed by SF, 14-Jan-2015.)
k k
 
Theoremimacok 4283 Image under a composition. (Contributed by SF, 4-Feb-2015.)
k k kk
 
Theoremelimaksn 4284 Membership in a Kuratowski image of a singleton. (Contributed by SF, 4-Feb-2015.)
   &       =>    k
 
Theoremcokrelk 4285 A Kuratowski composition is a Kuratowski relationship. (Contributed by SF, 4-Feb-2015.)
k k
 
2.2.8  Kuratowski existence theorems
 
Theoremxpkvexg 4286 The Kuratowski cross product of with a set is a set. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremcnvkexg 4287 The Kuratowski converse of a set is a set. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremcnvkex 4288 The Kuratowski converse of a set is a set. (Contributed by SF, 14-Jan-2015.)
   =>    k
 
Theoremxpkexg 4289 The Kuratowski cross product of two sets is a set. (Contributed by SF, 13-Jan-2015.)
k
 
Theoremxpkex 4290 The Kuratowski cross product of two sets is a set. (Contributed by SF, 14-Jan-2015.)
   &       =>    k
 
Theoremp6exg 4291 The P6 operator applied to a set yields a set. (Contributed by SF, 13-Jan-2015.)
P6
 
Theoremdfuni12 4292 Alternate definition of unit union. (Contributed by SF, 15-Mar-2015.)
1 P6 k
 
Theoremuni1exg 4293 The unit union operator preserves sethood. (Contributed by SF, 13-Jan-2015.)
1
 
Theoremuni1ex 4294 The unit union operator preserves sethood. (Contributed by SF, 14-Jan-2015.)
   =>   1
 
Theoremssetkex 4295 The Kuratowski subset relationship is a set. (Contributed by SF, 13-Jan-2015.)
Sk
 
Theoremsikexlem 4296* Lemma for sikexg 4297. Equality for two subsets of 1c squared . (Contributed by SF, 14-Jan-2015.)
1c k 1c   &    1c k 1c   =>   
 
Theoremsikexg 4297 The Kuratowski singleton image of a set is a set. (Contributed by SF, 14-Jan-2015.)
SIk
 
Theoremsikex 4298 The Kuratowski singleton image of a set is a set. (Contributed by SF, 14-Jan-2015.)
   =>    SIk
 
Theoremdfimak2 4299 Alternate definition of Kuratowski image. This is the first of a series of definitions throughout the file designed to prove existence of various operations. (Contributed by SF, 14-Jan-2015.)
k P6 1c k SIk k
 
Theoremimakexg 4300 The image of a set under a set is a set. (Contributed by SF, 14-Jan-2015.)
k
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >