NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3800
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3745 . . 3
21uneq1d 3418 . 2
3 df-pr 3743 . 2
4 df-pr 3743 . 2
52, 3, 43eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   cun 3208  csn 3738  cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743
This theorem is referenced by:  preq2  3801  preq12  3802  preq1i  3803  preq1d  3806  tpeq1  3809  prnzg  3837  uniprg  3907  intprg  3961  opkeq1  4060  preq12b  4128  preq12bg  4129  enprmapc  6084
  Copyright terms: Public domain W3C validator