New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > preq12b | Unicode version |
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
preq12b.1 | |
preq12b.2 | |
preq12b.3 | |
preq12b.4 |
Ref | Expression |
---|---|
preq12b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12b.1 | . . . . . 6 | |
2 | 1 | prid1 3828 | . . . . 5 |
3 | eleq2 2414 | . . . . 5 | |
4 | 2, 3 | mpbii 202 | . . . 4 |
5 | 1 | elpr 3752 | . . . 4 |
6 | 4, 5 | sylib 188 | . . 3 |
7 | preq1 3800 | . . . . . . . 8 | |
8 | 7 | eqeq1d 2361 | . . . . . . 7 |
9 | preq12b.2 | . . . . . . . 8 | |
10 | preq12b.4 | . . . . . . . 8 | |
11 | 9, 10 | preqr2 4126 | . . . . . . 7 |
12 | 8, 11 | syl6bi 219 | . . . . . 6 |
13 | 12 | com12 27 | . . . . 5 |
14 | 13 | ancld 536 | . . . 4 |
15 | prcom 3799 | . . . . . . 7 | |
16 | 15 | eqeq2i 2363 | . . . . . 6 |
17 | preq1 3800 | . . . . . . . . 9 | |
18 | 17 | eqeq1d 2361 | . . . . . . . 8 |
19 | preq12b.3 | . . . . . . . . 9 | |
20 | 9, 19 | preqr2 4126 | . . . . . . . 8 |
21 | 18, 20 | syl6bi 219 | . . . . . . 7 |
22 | 21 | com12 27 | . . . . . 6 |
23 | 16, 22 | sylbi 187 | . . . . 5 |
24 | 23 | ancld 536 | . . . 4 |
25 | 14, 24 | orim12d 811 | . . 3 |
26 | 6, 25 | mpd 14 | . 2 |
27 | preq12 3802 | . . 3 | |
28 | prcom 3799 | . . . . 5 | |
29 | 17, 28 | syl6eq 2401 | . . . 4 |
30 | preq1 3800 | . . . 4 | |
31 | 29, 30 | sylan9eq 2405 | . . 3 |
32 | 27, 31 | jaoi 368 | . 2 |
33 | 26, 32 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 cvv 2860 cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
This theorem is referenced by: preq12bg 4129 |
Copyright terms: Public domain | W3C validator |