| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > preq12b | Unicode version | ||
| Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| preq12b.1 |
|
| preq12b.2 |
|
| preq12b.3 |
|
| preq12b.4 |
|
| Ref | Expression |
|---|---|
| preq12b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12b.1 |
. . . . . 6
| |
| 2 | 1 | prid1 3828 |
. . . . 5
|
| 3 | eleq2 2414 |
. . . . 5
| |
| 4 | 2, 3 | mpbii 202 |
. . . 4
|
| 5 | 1 | elpr 3752 |
. . . 4
|
| 6 | 4, 5 | sylib 188 |
. . 3
|
| 7 | preq1 3800 |
. . . . . . . 8
| |
| 8 | 7 | eqeq1d 2361 |
. . . . . . 7
|
| 9 | preq12b.2 |
. . . . . . . 8
| |
| 10 | preq12b.4 |
. . . . . . . 8
| |
| 11 | 9, 10 | preqr2 4126 |
. . . . . . 7
|
| 12 | 8, 11 | syl6bi 219 |
. . . . . 6
|
| 13 | 12 | com12 27 |
. . . . 5
|
| 14 | 13 | ancld 536 |
. . . 4
|
| 15 | prcom 3799 |
. . . . . . 7
| |
| 16 | 15 | eqeq2i 2363 |
. . . . . 6
|
| 17 | preq1 3800 |
. . . . . . . . 9
| |
| 18 | 17 | eqeq1d 2361 |
. . . . . . . 8
|
| 19 | preq12b.3 |
. . . . . . . . 9
| |
| 20 | 9, 19 | preqr2 4126 |
. . . . . . . 8
|
| 21 | 18, 20 | syl6bi 219 |
. . . . . . 7
|
| 22 | 21 | com12 27 |
. . . . . 6
|
| 23 | 16, 22 | sylbi 187 |
. . . . 5
|
| 24 | 23 | ancld 536 |
. . . 4
|
| 25 | 14, 24 | orim12d 811 |
. . 3
|
| 26 | 6, 25 | mpd 14 |
. 2
|
| 27 | preq12 3802 |
. . 3
| |
| 28 | prcom 3799 |
. . . . 5
| |
| 29 | 17, 28 | syl6eq 2401 |
. . . 4
|
| 30 | preq1 3800 |
. . . 4
| |
| 31 | 29, 30 | sylan9eq 2405 |
. . 3
|
| 32 | 27, 31 | jaoi 368 |
. 2
|
| 33 | 26, 32 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
| This theorem is referenced by: preq12bg 4129 |
| Copyright terms: Public domain | W3C validator |