New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkeq1 | Unicode version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
opkeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3745 | . . 3 | |
2 | preq1 3800 | . . 3 | |
3 | 1, 2 | preq12d 3808 | . 2 |
4 | df-opk 4059 | . 2 | |
5 | df-opk 4059 | . 2 | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 csn 3738 cpr 3739 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkeq12 4062 opkeq1i 4063 opkeq1d 4066 opkthg 4132 opkelcnvkg 4250 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opksnelsik 4266 opkelimagekg 4272 elimaksn 4284 sikexlem 4296 dfimak2 4299 insklem 4305 setswith 4322 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 nnsucelrlem1 4425 leltfintr 4459 ltfinex 4465 ltfintrilem1 4466 ltfintri 4467 ssfin 4471 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 sfinltfin 4536 spfinex 4538 vfinncvntnn 4549 vfinspss 4552 vfinncsp 4555 dfop2lem1 4574 setconslem1 4732 setconslem2 4733 setconslem3 4734 setconslem4 4735 setconslem6 4737 setconslem7 4738 df1st2 4739 dfswap2 4742 |
Copyright terms: Public domain | W3C validator |