| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > preqr2 | Unicode version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| preqr2.1 | 
 | 
| preqr2.2 | 
 | 
| Ref | Expression | 
|---|---|
| preqr2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prcom 3799 | 
. . 3
 | |
| 2 | prcom 3799 | 
. . 3
 | |
| 3 | 1, 2 | eqeq12i 2366 | 
. 2
 | 
| 4 | preqr2.1 | 
. . 3
 | |
| 5 | preqr2.2 | 
. . 3
 | |
| 6 | 4, 5 | preqr1 4125 | 
. 2
 | 
| 7 | 3, 6 | sylbi 187 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: preqr2g 4127 preq12b 4128 opkthg 4132 | 
| Copyright terms: Public domain | W3C validator |