New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq12i | Unicode version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeq12i.1 | |
eqeq12i.2 |
Ref | Expression |
---|---|
eqeq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . 2 | |
2 | eqeq12i.2 | . 2 | |
3 | eqeq12 2365 | . 2 | |
4 | 1, 2, 3 | mp2an 653 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: rabbi 2789 sbceqg 3152 unineq 3505 preqr2 4125 opkthg 4131 preaddccan2 4455 ltfinirr 4457 addccan1 4560 rncoeq 4975 swapf1o 5511 eqfnov 5589 eqncg 6126 ncseqnc 6128 tc11 6228 taddc 6229 muc0or 6252 addccan2nc 6265 nnc3n3p1 6278 |
Copyright terms: Public domain | W3C validator |