| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > opkthg | Unicode version | ||
| Description: Two Kuratowski ordered pairs are equal iff their components are equal. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| opkthg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 955 |
. . . . 5
| |
| 2 | opkth1g 4131 |
. . . . 5
| |
| 3 | 1, 2 | sylan 457 |
. . . 4
|
| 4 | simp2 956 |
. . . . . 6
| |
| 5 | simp3 957 |
. . . . . 6
| |
| 6 | 4, 5 | jca 518 |
. . . . 5
|
| 7 | opkeq1 4060 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq1d 2361 |
. . . . . . . . . 10
|
| 9 | 8 | biimpd 198 |
. . . . . . . . 9
|
| 10 | 9 | impcom 419 |
. . . . . . . 8
|
| 11 | df-opk 4059 |
. . . . . . . . . . 11
| |
| 12 | df-opk 4059 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | eqeq12i 2366 |
. . . . . . . . . 10
|
| 14 | prex 4113 |
. . . . . . . . . . 11
| |
| 15 | prex 4113 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | preqr2 4126 |
. . . . . . . . . 10
|
| 17 | 13, 16 | sylbi 187 |
. . . . . . . . 9
|
| 18 | preqr2g 4127 |
. . . . . . . . 9
| |
| 19 | 17, 18 | syl5 28 |
. . . . . . . 8
|
| 20 | 10, 19 | syl5 28 |
. . . . . . 7
|
| 21 | 20 | exp3a 425 |
. . . . . 6
|
| 22 | 21 | imp 418 |
. . . . 5
|
| 23 | 6, 22 | sylan 457 |
. . . 4
|
| 24 | 3, 23 | jcai 522 |
. . 3
|
| 25 | 24 | ex 423 |
. 2
|
| 26 | opkeq12 4062 |
. 2
| |
| 27 | 25, 26 | impbid1 194 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
| This theorem is referenced by: opkth 4133 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 |
| Copyright terms: Public domain | W3C validator |