New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkthg | Unicode version |
Description: Two Kuratowski ordered pairs are equal iff their components are equal. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
opkthg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 955 | . . . . 5 | |
2 | opkth1g 4131 | . . . . 5 | |
3 | 1, 2 | sylan 457 | . . . 4 |
4 | simp2 956 | . . . . . 6 | |
5 | simp3 957 | . . . . . 6 | |
6 | 4, 5 | jca 518 | . . . . 5 |
7 | opkeq1 4060 | . . . . . . . . . . 11 | |
8 | 7 | eqeq1d 2361 | . . . . . . . . . 10 |
9 | 8 | biimpd 198 | . . . . . . . . 9 |
10 | 9 | impcom 419 | . . . . . . . 8 |
11 | df-opk 4059 | . . . . . . . . . . 11 | |
12 | df-opk 4059 | . . . . . . . . . . 11 | |
13 | 11, 12 | eqeq12i 2366 | . . . . . . . . . 10 |
14 | prex 4113 | . . . . . . . . . . 11 | |
15 | prex 4113 | . . . . . . . . . . 11 | |
16 | 14, 15 | preqr2 4126 | . . . . . . . . . 10 |
17 | 13, 16 | sylbi 187 | . . . . . . . . 9 |
18 | preqr2g 4127 | . . . . . . . . 9 | |
19 | 17, 18 | syl5 28 | . . . . . . . 8 |
20 | 10, 19 | syl5 28 | . . . . . . 7 |
21 | 20 | exp3a 425 | . . . . . 6 |
22 | 21 | imp 418 | . . . . 5 |
23 | 6, 22 | sylan 457 | . . . 4 |
24 | 3, 23 | jcai 522 | . . 3 |
25 | 24 | ex 423 | . 2 |
26 | opkeq12 4062 | . 2 | |
27 | 25, 26 | impbid1 194 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wceq 1642 wcel 1710 csn 3738 cpr 3739 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkth 4133 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 |
Copyright terms: Public domain | W3C validator |