New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabsn | Unicode version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
rabsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . . 5 | |
2 | 1 | pm5.32ri 619 | . . . 4 |
3 | 2 | baib 871 | . . 3 |
4 | 3 | abbidv 2468 | . 2 |
5 | df-rab 2624 | . 2 | |
6 | df-sn 3742 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wcel 1710 cab 2339 crab 2619 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rab 2624 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |