| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rabsn | Unicode version | ||
| Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
| Ref | Expression |
|---|---|
| rabsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2413 |
. . . . 5
| |
| 2 | 1 | pm5.32ri 619 |
. . . 4
|
| 3 | 2 | baib 871 |
. . 3
|
| 4 | 3 | abbidv 2468 |
. 2
|
| 5 | df-rab 2624 |
. 2
| |
| 6 | df-sn 3742 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2410 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rab 2624 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |