New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralunb | Unicode version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3221 | . . . . . 6 | |
2 | 1 | imbi1i 315 | . . . . 5 |
3 | jaob 758 | . . . . 5 | |
4 | 2, 3 | bitri 240 | . . . 4 |
5 | 4 | albii 1566 | . . 3 |
6 | 19.26 1593 | . . 3 | |
7 | 5, 6 | bitri 240 | . 2 |
8 | df-ral 2620 | . 2 | |
9 | df-ral 2620 | . . 3 | |
10 | df-ral 2620 | . . 3 | |
11 | 9, 10 | anbi12i 678 | . 2 |
12 | 7, 8, 11 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wal 1540 wcel 1710 wral 2615 cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: ralun 3446 ralprg 3776 raltpg 3778 ralunsn 3880 ssofss 4077 |
Copyright terms: Public domain | W3C validator |