New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elun | Unicode version |
Description: Membership in union. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
elun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 | |
2 | elex 2868 | . . 3 | |
3 | elex 2868 | . . 3 | |
4 | 2, 3 | jaoi 368 | . 2 |
5 | elning 3218 | . . . 4 ∼ &ncap ∼ ∼ ∼ | |
6 | elcomplg 3219 | . . . . 5 ∼ | |
7 | elcomplg 3219 | . . . . 5 ∼ | |
8 | 6, 7 | nanbi12d 1303 | . . . 4 ∼ ∼ |
9 | 5, 8 | bitrd 244 | . . 3 ∼ &ncap ∼ |
10 | df-un 3215 | . . . 4 ∼ &ncap ∼ | |
11 | 10 | eleq2i 2417 | . . 3 ∼ &ncap ∼ |
12 | oran 482 | . . . 4 | |
13 | df-nan 1288 | . . . 4 | |
14 | 12, 13 | bitr4i 243 | . . 3 |
15 | 9, 11, 14 | 3bitr4g 279 | . 2 |
16 | 1, 4, 15 | pm5.21nii 342 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wo 357 wa 358 wnan 1287 wcel 1710 cvv 2860 &ncap cnin 3205 ∼ ccompl 3206 cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: elsymdif 3224 uneqri 3407 uncom 3409 uneq1 3412 unass 3421 ssun1 3427 unss1 3433 ssequn1 3434 unss 3438 rexun 3444 ralunb 3445 indi 3502 undi 3503 unineq 3506 undif3 3516 symdif2 3521 rabun2 3535 reuun2 3539 undif4 3608 ssundif 3634 dfpr2 3750 eltpg 3770 pwpr 3884 pwtp 3885 unipr 3906 uniun 3911 intun 3959 iinun2 4033 iunun 4047 iunxun 4048 iinuni 4050 pwadjoin 4120 pw1un 4164 dfimak2 4299 dfaddc2 4382 nnsucelrlem1 4425 nnsucelrlem2 4426 nndisjeq 4430 ltfinex 4465 ltfintrilem1 4466 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenoddnnnul 4515 evenodddisjlem1 4516 nnadjoinlem1 4520 vfinspss 4552 vinf 4556 dfphi2 4570 dfop2lem1 4574 phi011lem1 4599 proj1op 4601 proj2op 4602 eqop 4612 brun 4693 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 xpundi 4833 xpundir 4834 dmun 4913 funun 5147 unpreima 5409 fvclss 5463 cupex 5817 clos1baseima 5884 connexex 5914 enadjlem1 6060 enadj 6061 enprmaplem4 6080 fce 6189 leconnnc 6219 nmembers1lem3 6271 nncdiv3lem2 6277 nchoicelem6 6295 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |