| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ssofss | Unicode version | ||
| Description: Condition for subset when
|
| Ref | Expression |
|---|---|
| ssofss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2863 |
. . . . . . . 8
| |
| 2 | 1 | elcompl 3226 |
. . . . . . 7
|
| 3 | ssel 3268 |
. . . . . . . 8
| |
| 4 | 3 | con3d 125 |
. . . . . . 7
|
| 5 | 2, 4 | syl5bi 208 |
. . . . . 6
|
| 6 | 5 | imp 418 |
. . . . 5
|
| 7 | 6 | pm2.21d 98 |
. . . 4
|
| 8 | 7 | ralrimiva 2698 |
. . 3
|
| 9 | 8 | biantrud 493 |
. 2
|
| 10 | ralv 2873 |
. . . 4
| |
| 11 | uncompl 4075 |
. . . . 5
| |
| 12 | 11 | raleqi 2812 |
. . . 4
|
| 13 | dfss2 3263 |
. . . 4
| |
| 14 | 10, 12, 13 | 3bitr4ri 269 |
. . 3
|
| 15 | ralunb 3445 |
. . 3
| |
| 16 | 14, 15 | bitri 240 |
. 2
|
| 17 | 9, 16 | syl6rbbr 255 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
| This theorem is referenced by: ssofeq 4078 ssrelk 4212 |
| Copyright terms: Public domain | W3C validator |