NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssofss Unicode version

Theorem ssofss 4077
Description: Condition for subset when is already known to be a subset. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
ssofss
Distinct variable groups:   ,   ,   ,

Proof of Theorem ssofss
StepHypRef Expression
1 vex 2863 . . . . . . . 8
21elcompl 3226 . . . . . . 7
3 ssel 3268 . . . . . . . 8
43con3d 125 . . . . . . 7
52, 4syl5bi 208 . . . . . 6
65imp 418 . . . . 5
76pm2.21d 98 . . . 4
87ralrimiva 2698 . . 3
98biantrud 493 . 2
10 ralv 2873 . . . 4
11 uncompl 4075 . . . . 5
1211raleqi 2812 . . . 4
13 dfss2 3263 . . . 4
1410, 12, 133bitr4ri 269 . . 3
15 ralunb 3445 . . 3
1614, 15bitri 240 . 2
179, 16syl6rbbr 255 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540   wcel 1710  wral 2615  cvv 2860   ∼ ccompl 3206   cun 3208   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260
This theorem is referenced by:  ssofeq  4078  ssrelk  4212
  Copyright terms: Public domain W3C validator